
盛趣游戏数据开发工程师(数仓方向)
社招全职2年以上技术支持地点:上海状态:招聘
任职要求
1、计算机或相关专业本科及以上学历,2年以上大数据开发工作经验; 2、熟悉数据仓库实施方法论,深入了解数据仓库体系,并支撑过实际业务场景; 3、熟悉SQL、Java、Python等编程语言,精通HiveSQL调优,熟悉Spark Core/SparkSQL计算模型及算子调优; 4、熟悉Hadoop, Hive, Spark, Kafka, Flink, ES,Trino,StarRocks等大数据相关技术,有基于分布式数据存储与计算平台应用开发经验; 5、善于沟通,对业务敏感,能快速理解业务背景,具备优秀的技术与业务结合能力; 6、乐于探索新技术和业界新问题的解决方案,学习主动性强;
工作职责
1、负责离线与实时数据仓库的构建,负责数据模型的设计和开发; 2、负责公司基础数据的开发、调优、维护等工作; 3、负责游戏指标体系建设与维护; 4、深入业务,理解并合理抽象业务需求,发挥数据价值,与业务团队紧密合作; 5、参与数据治理工作,提升数据易用性、规范性和数据质量。
包括英文材料
学历+
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
数据仓库+
https://www.youtube.com/watch?v=9GVqKuTVANE
From Zero to Data Warehouse Hero: A Full SQL Project Walkthrough and Real Industry Experience!
https://www.youtube.com/watch?v=k4tK2ttdSDg
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Kafka+
https://developer.confluent.io/what-is-apache-kafka/
https://www.youtube.com/watch?v=CU44hKLMg7k
https://www.youtube.com/watch?v=j4bqyAMMb7o&list=PLa7VYi0yPIH0KbnJQcMv5N9iW8HkZHztH
In this Apache Kafka fundamentals course, we introduce you to the basic Apache Kafka elements and APIs, as well as the broader Kafka ecosystem.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
ElasticSearch+
https://www.youtube.com/watch?v=a4HBKEda_F8
Learn about Elasticsearch with this comprehensive course designed for beginners, featuring both theoretical concepts and hands-on applications using Python (though applicable to any programming language). The course is structured in two parts: first covering essential Elasticsearch fundamentals including index management, document storage, text analysis, pipeline creation, search functionality, and advanced features like semantic search and embeddings; followed by a practical section where you'll build a real-world website using Elasticsearch as a search engine, working with the Astronomy Picture of the Day (APOD) dataset to implement features such as data cleaning pipelines, tokenization, pagination, and aggregations.
StarRocks+
https://docs.starrocks.io/docs/quick_start/
These Quick Start guides will help you get going with a small StarRocks environment.
https://itnext.io/introduction-to-starrocks-a-new-modern-analytical-database-1db2177d26e1
Recently, I had the opportunity to explore StarRocks which is the new kid in the block when talking about massive scale databases which are able to handle petabytes of data.
相关职位
社招自动驾驶板块
1. 数据指标体系搭建:深挖数据价值,构建和维护车端信号数据仓库体系和数据指标体系,为算法和数据闭环提供PB级共享平台和框架支持;负责核心数据指标体系(包括业务分类、生产状态、功能指标等)的搭建、监控与运营;快速输出并不断沉淀标准化的产品数据体系,让业务的数据化运营更加高效、便捷; 2. 数据治理:梳理上下游的数据资产,制定及推广数据标准(如研发规范、质量规范、保障规范)和治理流程,确保数据准 确性、完整性和一致性。 3. 数据管理:负责元数据管理、数据质量检查、数据分级管理等系统的设计、开发及应用,提升数据易用性、可用性及稳定性; 4. 业务团队数据需求的研发支撑:如日志埋点、车联网数据、内部与外部数据的采集、数据同步、数据清洗与标准化、数据模型设计、离线数据处理、实时数据处理、数据服务化、数据可视化等;
更新于 2025-07-08
社招
1.负责自动驾驶业务数据的数据采集、清洗、转换和加载(ETL)流程,构建和维护车端信号数据仓库体系和数据指标体系 2.支持C端用户和B端分析的各种数据需求 3.参与数据治理工作(如数据质量核查、元数据管理等) 建立监控和反馈指标,持续优化改进产品的架构及性能,保证PB级数仓的数据质量和平台稳定性
更新于 2025-06-04

社招3年以上集团商业部
1.负责数据模型的设计、ETL实施、性能优化、ETL数据监控以及相关技术问题的解决; 2.面向广告业务方向,建设专题数据,基于数据仓库构建用户、业务核心标签、特征工程数据,与业务场景深度结合,为各业务线提供数据支持; 3.负责数据仓库体系的设计、构建和实现,数仓标准化分层体系建设工作,并沉淀企业级数据资产,助力提升支持业务的效率,探索数据的增量价值; 4.负责数据治理和管理体系,结合业务+元数据+技术,推进资源成本的优化,提高数据服务的数据质量,保障数据产出的稳定性。
更新于 2025-02-08