影石算法集成工程师(S)
任职要求
1 熟悉camera业务框架
2 对深度学习模型有一定了解,具有嵌入式平台模型部署经验;
3 对高性能计算有…工作职责
1 负责视频图像算法在嵌入式端的部署集成,联调; 2 评审,评估并实现相机相关新功能; 3 优化算法pipeline的各项性能、内存指标; 4 负责与媒体、算法、Tuning沟通,实现相关软件通路;
1.智能分析平台研发:主导腾讯云ChatBI 的架构设计,深度融合大模型技术(如 RAG、NL2SQL、NL2DSL),实现自然语言驱动的数据查询与可视化分析能力,推动产品向 AI 原生方向升级。 2.AI 驱动产品设计:负责腾讯云数据分析类产品的智能化迭代,基于 LLM 能力重构交互逻辑(如自然语言语义解析、动态知识注入),打造 “零代码” AI 分析体验,覆盖 SaaS 与私有化部署场景。 3.AI 技术方案落地:根据业务需求输出兼具创新性与可行性的技术方案,主导大模型微调(如领域适配、参数高效优化)、向量数据库集成、智能查询优化等核心模块开发,确保代码质量与工程落地性。 4.智能场景问题攻坚:针对 SaaS 与私有化客户的复杂需求,通过 AI 技术手段(如模型推理优化、实时数据处理)解决智能分析链路中的性能瓶颈、语义歧义等问题,保障 AI 功能在不同部署环境下的稳定性与准确性。
1,负责电商数据仓库的ETL流程设计、开发与优化,尤其关注招商、营销活动(含大促)等核心业务场景的数据集成,确保数据的准确性、实时性和为业务决策和AI应用提供高质量数据基础。 2,主导电商领域的数据建模工作,构建满足用户画像、商品分析、营销效果评估等业务需求的多维数据模型,支持精细化运营、个性化推荐和智能决策。 3,与电商业务、招商、营销业务和数据科学等组紧密合作,深入理解业务痛点和增长目标,提供创新的数据解决方案,优化数据处理流程,提升数据赋能业务的能力。 4,参与大数据平台的优化和扩展,探索并应用AI技术(如机器学习、自然语言处理等)提升数据处理效率、数据质量和数据洞察能力,例如智能数据清洗、异常检测、特征工程自动化等。 5,编写高质量的代码和技术文档,确保代码的可维护性、可扩展性和可理解性,并积极参与技术分享和知识沉淀。 1,Responsible for the design, development, and optimization of ETL processes for the e-commerce data warehouse, with a focus on core business scenarios such as merchant acquisition, marketing campaigns (including major promotions), ensuring accurate, real-time, and efficient data transmission, and providing high-quality data foundation for business decisions and AI applications. 2,Lead data modeling efforts in the e-commerce domain, building multi-dimensional data models that meet the business needs of user profiling, product analysis, marketing performance evaluation, etc., supporting refined operations, personalized recommendations, and intelligent decision-making. 3,Collaborate closely with e-commerce business, merchant acquisition, marketing, and other teams to deeply understand business pain points and growth objectives, provide innovative data solutions, optimize data processing workflows, and enhance the ability of data to empower business. 4,Participate in the optimization and expansion of big data platforms, explore and apply AI technologies (such as machine learning, natural language processing, etc.) to improve data processing efficiency, data quality, and data insight capabilities, such as intelligent data cleaning, anomaly detection, and automated feature engineering. 5,Produce high-quality code and technical documentation to ensure code maintainability, scalability, and understandability, and actively participate in technical sharing and knowledge accumulation.
