logo of tongyi

通义研究型实习生 - 面向多领域任务泛化的GUI Agent多轮强化学习方法研究

实习兼职通义研究型实习生地点:杭州状态:招聘

任职要求


1. 计算机科学、人工智能、机器学习或相关领域的硕士或博士学位。
2. 在多模态、大语言模型、Agent机器学习等一个或多个领域有较深入的研究。
3. 具有出色的分析、解决问题的能力,能深入解决大模型训练、应用存在的问题,有自主探索解决方案的能力者。
4. 能够积极创新, 乐于面对挑战, 负责敬业,优秀的团队合作精神,一起探索新技术,推进技术进…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


1. 探索研究多模态大模型、GUI agent、AI memory、多模态RAG等前沿技术。
2. 参与研发多模态、全模态大模型等下一代人工智能核心技术,探索面向真实环境的多模态智能体多轮强化学习,提升大模型能力。
3. 负责跟踪和研究多模态大模型前沿技术调研、落地、对业务进行优化。
包括英文材料
机器学习+
学历+
AI agent+
大模型+
算法+
NeurIPS+
还有更多 •••
相关职位

logo of amap
实习高德研究型实习生

职位概述 我们正在寻找在视觉-语言-动作(Vision-Language-Action, VLA)领域具有扎实理论基础和丰富实践经验的算法工程师或研究员,致力于构建下一代通用智能机器人系统。你将参与从数据构建、模型设计到仿真训练与实机部署的全链路研发,推动 VLA 大模型在机械臂操作、人形机器人控制等复杂工业与开放场景中的前沿探索与实际落地。 职位描述(Responsibilities) 1. 前沿算法研究与复现 ○ 跟踪 VLA 领域最新进展(如 OpenVLA、RT-2、Pi0、RDT、Diffusion Policy 等),完成 SOTA 算法在仿真与实机环境下的复现与性能分析; ○ 探索基于大模型的端到端机器人决策框架,实现感知→理解→规划→动作的闭环。 2. VLA 模型架构设计与优化 ○ 设计面向工业场景的 VLA 模型结构,重点解决多模态特征对齐、动作序列生成、推理效率优化等问题; ○ 提升机械臂在复杂任务中的操作精度、泛化能力与鲁棒性。 3. Scaling 研究与泛化能力提升 ○ 开展 VLA 的 scaling law 研究,涵盖数据规模、模型结构、机器人构型等维度; ○ 实现长序列任务执行、跨任务技能迁移与动作泛化,在更复杂的工厂或开放环境中验证模型上限。 4. 数据系统与自动标注开发 ○ 参与多模态大模型所需的数据清洗、自动标注与增强系统的开发; ○ 探索高效的数据合成方法(如 sim2real 数据生成、LLM 辅助标注),保障数据质量与多样性。 5. 仿真训练与真实部署 ○ 基于 Isaac Sim / Gym / Lab、MuJoCo 等平台搭建高保真仿真环境,构建强化学习与模仿学习训练框架; ○ 设计 real2sim2real 迁移策略,加速算法从仿真到现实世界的部署; ○ 具备实机调试经验,能独立完成模型在机械臂或人形机器人上的部署与迭代。

更新于 2025-10-31北京
logo of tongyi
实习通义研究型实习生

1.负责多模态理解大模型的前沿算法研究、实现与优化,重点攻克图像/视频理解、视觉问答、跨模态交互等关键任务。 2.参与构建和清洗大规模多模态数据集,探索数据增强策略,并可能建设高效的数据生产、标注和评估 pipeline,涵盖通用数据、视频、OCR等场景。 3.具备技术前瞻性与创新能力,跟踪国际最新技术动态,探索如多模态理解创新架构、音视频理解、Agentic RAG、AI Memory等新方向,并提出创新算法或方案,推动学术前沿发展。

更新于 2025-12-02杭州|上海
logo of aliyun
实习阿里云研究型实习

我们正在寻找对人工智能、多模态数据处理、系统性能优化感兴趣的实习生,参与一个面向多模态数据获取、解析、压缩与高效传输的研究课题。该课题聚焦于提升多模态系统在复杂环境下的实时性表现与资源利用率,具有广泛的应用前景(如智能运维、RAG检索增强生成、边缘计算等)。你将参与的工作包括但不限于: 1. 多模态数据采集与预处理:从网页、API、数据库、摄像头、麦克风等来源获取文本、图像、音频和视频数据; 2. 多模态数据解析与特征提取:使用OCR、ASR、NLP、CV等技术解析不同模态内容; 3. 模型轻量化与加速:探索基于Transformer、CNN、LSTM等模型的压缩、蒸馏、量化方法; 4. 系统级优化与部署:设计低延迟、低资源占用的数据处理流程,支持在边缘设备上运行; 5. 性能评估与实验分析:构建测试集,评估系统的吞吐量、响应时间、准确率等关键指标; 6. 撰写技术文档与研究报告:整理实验过程、结果与改进建议。 技术要求(优先但不强制): 1. 熟悉Python编程语言,有良好的代码规范; 2. 了解基本的NLP、CV或语音识别技术; 3. 掌握至少一种深度学习框架(PyTorch/TensorFlow); 4. 熟悉Linux系统及常用命令行工具。 有以下经验者优先考虑: 1. 多模态任务处理经验(如CLIP、Flamingo等); 2. 模型压缩与部署经验(如TensorRT、ONNX、OpenVINO、TVM等); 3. 使用过音视频处理工具(如FFmpeg、OpenCV、Whisper、YOLO等); 4. 有一定系统编程能力(C/C++、CUDA、FPGA基础)。

更新于 2025-07-02杭州
logo of aliyun
实习阿里云研究型实习

RAG(检索增强生成)是一种将信息检索技术与大语言模型相结合的技术架构。它通过从海量文档中检索出与查询相关的信息,并将这些信息输入到大语言模型中,从而生成更准确且全面的回答或文本。然而,要实现生产级的RAG性能和可靠性,还需要面临诸多挑战。阿里云人工智能平台(PAI)团队专注于RAG平台的开发与持续优化,致力于推动企业级RAG在实际业务中的落地与应用。我们目前的研究和开发方向包括但不限于: 1. 查询理解与优化:提升对大语言模型的查询理解能力,优化召回机制及查询重排序算法。 2. 多模态的文档理解和问答生成:提升多模态文档(包括文本和图像等)的理解及问答生成能力。 3. 大模型Agent技术:提升基于大语言模型的Agent的任务规划和工具调用能力。 4. Text2SQL生成:优化从自然语言自动生成SQL查询的准确性。 5. RAG效果评估:构建benchmark和效果评估。

更新于 2024-11-19杭州|上海