夸克智能信息-夸克-Al Agent高级算法专家-通用Agent
任职要求
1.学历背景:计算机科学、人工智能、数学等相关专业硕士及以上学历。 2.工作经验:5年以上Al/大模型算法研发经验,有通用Agent、智能对话系统、搜索推荐等相关方向核心研发经历者优先。 3.技术能力:精通大模型原理与应用(如Transformer架构、预训练与微调技术),熟练掌握Python及TensorFlow/PyTorch等深度学习框架;具备搜索算法、自然语言处理(NLP)、智能决策等领域扎实的技术功底。 4.项目经验:有主导复杂AI系统(如对话机器人、智能搜索引擎、Agent类产品)从算法设计到落地的完整项目经验,能独立解决高难度技术问题。 加分项: 1.学术成果:在AI顶会(如NeurIPS、ICML、ICLR、ACL、EMNLP等)发表过相关论文者优先。 2.管理经验:具备3年以上算法团队管理经验,有搭建和培养研发团队、统筹复杂项目的成功案例。 3.参与过开源大模型或通用Agent相关项目,有开源社区贡献者优先。
工作职责
主导通用AIAgent(对标Manus等前沿形态)的核心算法研发与技术落地,带领团队攻克大模型驱动下的信息搜集、智能决策、智能办公等关键技术难题,构建具备搜索增强、自然对话能力的新一代通用智能体,支撑业务在多领域的创新应用。 具体职责: 1.算法研发与创新:牵头通用AIAgent的核心算法设计,包括但不限于大模型微调与强化学习、智能规划与决策、多模态信息融合、搜索增强机制等,持续提升Agent的通用性与任务执行能力。 2.场景落地与优化:聚焦搜索、对话等核心应用场景,主导算法方案的落地实施,结合业务需求迭代优化模型效果,解决实际场景中的技术瓶颈(如上下文理解、意图识别、多轮交互连贯性等)。 3.团队管理与赋能:带领5-10人算法团队开展研发工作,制定技术研发计划,统筹项目进度,搭建高效协作机制;指导团队成员成长,提升团队整体技术水平与创新能力。 4.技术攻坚与前瞻布局:跟踪国内外通用Agent、大模型领域的前沿技术动态(如顶会论文、行业实 践),主导技术预研与攻关,推动技术成果转化,保障团队技术竞争力。 5.跨部门协作与国际化支持:与产品、业务等部门深度协作,明确技术需求与落地路径;若涉及海外业务,需主导适配海外场景的算法优化,提供国际化技术支持。
岗位职责: 该职位通过大模型训练、Agent、RAG、N2SQL、NLP、语音处理等技术创新和突破,构建Agent通用平台、大模型训练平台等工具产品,同时支持对话机器人等垂直应用及智能产品的建设。欢迎敢于接受挑战的候选人加入我们,一起赋能企业客户。我们的研究方向包括但不限于: 1、通用大模型、推理大模型预训练、微调、强化对齐等技术的持续研究创新; 2、多语言大模型、领域大模型的训练技术研究与落地; 3、AI数据清洗、加工、合成、自动标注技术研究与落地; 4、文本机器人、语音机器人、质检机器人等客服域技术的研发与落地; 5、多Agent、RAG、N2SQL、自主决策等技术的研究与落地; 6、入呼大模型机器人、外呼大模型机器人研发经验;熟悉VAD, ASR, TTS等语音相关技术; 以上方向擅长其中1个即可
1、参与LLM方向的新技术研究和落地应用,支持指令微调、强化学习相关算法需求 2、支持通用ai agent在产品业务应用中的落地研发和效果优化,包括但不限于通用ai agent,深入理解大模型和通用ai agent运行原理,明确提升通用ai agent效果的核心技术方向。 3、负责ai agent的框架构建,agent与工具调用的优化,相关场景下大模型的优化,将ai agent框架、工具、大模型有效结合,为通用ai agent效果提供最佳的使用体验。
岗位描述: 全面负责夸克大模型在 Post-Training 能力进化和上限突破、持续推进模型能力边界和商业价值的不断延伸。通过对前沿算法的极致探索和高效能工程体系的构建,驱动模型在逻辑推理、问答、复杂多轮上下文、指令遵循、Agent 智能体、多模态交互等关键领域实现突破性进展,打造世界一流的模型效果,并定义其在未来 AI 应用中的核心价值。 工作职责: ● 【战略规划与技术引领】 制定并执行大模型 Post-training 的中长期技术路线图,预判并布局下一代对齐技术、能力增强及对齐方案。主导核心算法的战略方向,确保技术路径与公司业务战略高度协同。 ● 【核心能力与壁垒构建】 领导团队进行体系化的数据驱动实验,不仅局限于日常迭代,更要建立可规模化的能力提升范式。您将攻坚并解决模型在复杂指令遵循、通用问答、RAG、深度逻辑推理、内容创作、Tool-Using 等方面的瓶颈问题,构建技术壁垒。 ● 【前沿算法研究与创新】 深入探索并推动 Post-training 领域的前沿算法创新,包括但不限于 RLHF/RLAIF 的新范式、模型融合 (Model Fusion/Merge) 、模型蒸馏及 MoE 模型的高效对齐策略。您的目标是显著降低模型幻觉、提升推理的效果、加强模型复杂指令的遵循能力。 ● 【多模态与未来探索】 从统一多模态模型的战略视角出发,您将指导并规划多模态统一大模型的 Post-training 技术融合。探索并落地高效的多模态 SFT 数据构建、跨模态能力协同训练及对齐策略,确保模型在图文问答、视频对话 等复杂场景下实现无缝、精准的理解与生成。 ● 【团队领导与效能提升】 负责 Post-training 算法团队的组建、培养与管理,打造一支具备高效执行力和持续创新能力的顶尖团队。您将指导并优化从研究、实验、评测到部署的全链路工具链与工程框架,实现研发效能的倍增。