腾讯微信小店-应用研究工程师-交易治理方向
社招全职1年以上微信技术地点:广州状态:招聘
任职要求
1.数学、统计、计算机、机器学习等相关专业研究生及以上学历; 2.具备良好的逻辑思维能力、数据分析能力和团队协作精神; 3.精通python、C++等开发语言; 4.熟悉pytorch或tensorflow,具备较好的数据处理能力优先; 5.熟练掌握SQL,具备基于Hadoop/Spark/Flink等大数据平台的开发经验优先; 6.算法基础扎实,掌握机器学习相关理论知识,熟练掌握NLP、计算机视觉、多模态及相关知识,具备独立探索前沿方向技术的能力优先; 7.熟悉因果推断等专业统计知识,能够探索和优化检验方法优先。
工作职责
1.设计、开发和优化机器学习模型,应用于微信小店及微信交易的内容审核、风险控制、商家行为监管和用户安全等治理场景; 2.基于海量的数据,进行数据清洗、特征提取、模型训练和评估,提升平台违规行为检测的准确性和效率; 3.参与反作弊、信息过滤、虚假交易检测等关键系统的算法研发和优化,维护平台生态健康。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
学历+
数据分析+
[英文] Data Analyst Roadmap
https://roadmap.sh/data-analyst
Step by step guide to becoming an Data Analyst in 2025
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
因果推断+
https://web.stanford.edu/~swager/causal_inf_book.pdf
How best to understand and characterize causality is an age-old question in philosophy.
相关职位
社招微信交易平台技术
1.负责微信电商治理相关算法研发与应用,保障微信电商体系下的用户购物体验、公平合规的商家达人经营环境; 2.负责微信电商生态下,商家、达人、短视频、直播、图文等等不同对象主体的理解、问题识别与画像构建; 3.跟踪前沿技术并落地创新,处理海量数据,与产品团队协同提升运营业务效果; 4.探索最前沿的AI技术,并落地到微信电商治理业务场景中。
更新于 2025-06-22
社招1年以上微信交易平台技术
1.负责微信电商治理相关算法研发与应用,保障微信电商体系下的用户购物体验、公平合规的商家达人经营环境; 2.负责微信电商生态下,商家、达人、短视频、直播、图文等等不同对象主体的理解、问题识别与画像构建; 3.跟踪前沿技术并落地创新,处理海量数据,与产品团队协同提升运营业务效果; 4.探索最前沿的AI技术,并落地到微信电商治理业务场景中。
更新于 2025-09-22
社招微信技术
1.设计、开发和优化机器学习模型,应用于微信小店及微信交易的内容审核、风险控制、商家行为监管和用户安全等治理场景; 2.基于海量的数据,进行数据清洗、特征提取、模型训练和评估,提升平台违规行为检测的准确性和效率; 3.参与反作弊、负向信息过滤、虚假交易检测等关键系统的算法研发和优化,维护平台生态健康; 4.持续跟踪机器学习领域的前沿技术和应用,推动新技术在平台治理中的落地和创新; 5.根据平台实际业务需求,开发并维护可扩展、高效的算法框架和工具,提升治理系统的稳定性和灵活性。
更新于 2025-05-27