腾讯大模型应用算法研究员/工程师 - ChatBI方向
社招全职TEG技术地点:深圳状态:招聘
任职要求
1.熟练掌握Agent基础技术:Prompt工程、Function Call、MCP、Assistant API等; 2.熟悉RAG领域基础技术:熟练使用ES、Embedding,熟悉自动化数据清洗/知识搭建/测试集构建流程(如Graph RAG); 3.了解BI基础工具(Table…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
1.智能对话式BI智能体研发:支持自然语言查询、数据分析、可视化生成及业务决策建议,支持多源、多模态数据(文本,图表、数据看板)的动态生成和交互优化; 2.数据与知识增强:构建BI领域知识库(元数据、指标中台),设计数据权限控制、确保敏感数据处理; 3.BI方向工具开发:异动分析、归因及预测模型。
包括英文材料
AI agent+
https://www.ibm.com/think/ai-agents
Your one-stop resource for gaining in-depth knowledge and hands-on applications of AI agents.
Prompt+
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
A prompt is a natural language request submitted to a language model to receive a response back.
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/prompt-engineering
These techniques aren't recommended for reasoning models like gpt-5 and o-series models.
https://www.youtube.com/watch?v=LWiMwhDZ9as
Learn and master the fundamentals of Prompt Engineering and LLMs with this 5-HOUR Prompt Engineering Crash Course!
MCP+
https://www.youtube.com/watch?v=eur8dUO9mvE
Unlock the secrets of MCP! 🚀 Dive into the world of Model Context Protocol and learn how to seamlessly connect AI agents to databases, APIs, and more. Roy Derks breaks down its components, from hosts to servers, and showcases real-world applications. Gain the knowledge to revolutionize your AI projects!
https://www.youtube.com/watch?v=L94WBLL0KjY
Let's talk about MCP or the Model Context Protocol.
RAG+
https://www.youtube.com/watch?v=sVcwVQRHIc8
Learn how to implement RAG (Retrieval Augmented Generation) from scratch, straight from a LangChain software engineer.
ElasticSearch+
https://www.youtube.com/watch?v=a4HBKEda_F8
Learn about Elasticsearch with this comprehensive course designed for beginners, featuring both theoretical concepts and hands-on applications using Python (though applicable to any programming language). The course is structured in two parts: first covering essential Elasticsearch fundamentals including index management, document storage, text analysis, pipeline creation, search functionality, and advanced features like semantic search and embeddings; followed by a practical section where you'll build a real-world website using Elasticsearch as a search engine, working with the Astronomy Picture of the Day (APOD) dataset to implement features such as data cleaning pipelines, tokenization, pagination, and aggregations.
还有更多 •••
相关职位
社招TEG技术
1.多模态智能体研发:研发大数据领域多模态智能体,融合表格、文本、图像、视频、语音、结构化数据等多源信息,构建感知-推理-决策-交互一体化智能系统,并应用于智能决策,人机协作场景; 2.跨模态理解与生成:设计跨模态对齐与融合算法,提升智能体对复杂语义(如视觉问答、图文生成、视频摘要)的理解与生成能力,开发多模态检索增强技术。
更新于 2025-06-04深圳
社招TEG技术
1.研发智能体关键技术,推动指令理解、深度推理、反思优化等核心能力在Data+AI场景的技术落地和优化; 2.构建智能体工具调用体系,研发支持多工具调度的function call能力,优化多智能体协同决策机制; 3.参与搜索算法全链路优化,重点突破Query语义解析、内容理解、混合召回策略及RAG生成效果; 4.跟进LLM与智能体领域前沿技术,参与关键技术预研及工业级解决方案设计。
更新于 2025-05-20北京
社招TEG技术
1.参与AI代码生成工具的开发、评估与优化,构建智能编程辅助系统(如代码补全、自动Debug、代码生产等场景); 2.参与代码大模型的增量预训练和post-training训练优化; 3.探索代码检索、代码质量分析、自动化测试等场景的AI解决方案; 4.持续跟踪业界前沿技术趋势。
更新于 2025-05-20北京