logo of baidu

百度Feed推荐架构-大模型基础架构工程师-2026AIDU(J85308)

校招全职AIDU项目地点:北京状态:招聘

任职要求


-计算机软件或相关专业本科以上学历;
-有Linux/Unix下开发经验,熟悉多线程编程、网络编程,熟悉脚本编程;具有模型推理优化、分布式训练、GPU编程等经验者优先;
-对数据结构算法设计有较为深刻的理解,熟悉C/C++程序开发,有一定的高并发系统设计经验;
-熟悉Tensorflow, P…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


-负责模型优化工程架构研发工作,涵盖预估架构、特征工程、模型训练、推理优化等;
-优化模型核心推理/训练性能,负责自研推理&训练框架的演进迭代;
-优化在线的高并发高可用服务架构以及离线的高负载大数据量的服务架构;
-和团队一起攻克高性能、高并发、高可用性等各种不同技术场景下的技术挑战。
包括英文材料
学历+
Linux+
Unix+
多线程+
网络编程+
脚本+
数据结构+
算法+
还有更多 •••
相关职位

logo of bytedance
校招A54374

Team Introduction: TikTok is a global short-video platform available in 150 countries and regions. Our mission is to inspire creativity and bring joy by helping users discover real and interesting moments that make life better. TikTok's global headquarters are in Los Angeles and Singapore, and we also have offices in New York City, London, Dublin, Paris, Berlin, Dubai, Jakarta, Seoul, and Tokyo. TikTok Research & Development (R&D) Team: The TikTok R&D team is dedicated to building and maintaining industry-leading products that drive the success of TikTok’s global business. By joining us, you'll work on core scenarios such as user growth, social features, live streaming, e-commerce consumer side, content creation, and content consumption, helping our products scale rapidly across global markets. You'll also face deep technical challenges in areas like service architecture and infrastructure engineering, ensuring our systems operate with high quality, efficiency, and security. Meanwhile, our team also provides comprehensive technical solutions across diverse business needs, continuously optimizing product metrics and improving user experience. Here, you'll collaborate with leading experts in exploring cutting-edge technologies and pushing the boundaries of what's possible. Every line of your code will serve hundreds of millions of users. Our team is professional and goal-oriented, with an egalitarian and easy-going collaborative environment. Research Project Introduction: As the world's leading short-video platform, TikTok faces multiple challenges in its recommendation systems, including data sparsity for new users leading to insufficient personalisation, high timeliness requirements for live steaming recommendations, difficulty in maintaining user interest diversity, and complex e-commerce recommendation system chains. Traditional recommendation methods heavily rely on historical behaviour modeling, which struggles with the cold-start problem for new users. Live-streaming recommendations demand real-time responsiveness to rapidly changing content dynamics (e.g., host interactions, traffic fluctuations) within extremely short time windows (typically within 30 minutes) posing higher demands on the system's real-time perception and decision-making capabilities. Additionally, the immersive single-feed format amplifies the challenge of maintaining content diversity, requiring a careful balance between multi-interest learning and the risk of content drift caused by exploratory recommendations. The current e-commerce recommendation system follows a multi-stage funnel architecture (recall–ranking–re-ranking), which often leads to inconsistent chains, high maintenance costs, and an overreliance on short-term value prediction. This leads users to fall into content homogenization fatigue. To address these pain points, this project proposes leveraging large language models (LLMs) and large model technologies to achieve significant breakthroughs. On one hand, LLMs—with their vast knowledge base and few-shot reasoning capabilities—can infer new users' potential intentions from registration data and external knowledge, thereby alleviating cold-start issues. On the other hand, by integrating graph neural networks (GNNs) and full-lifecycle user behavior sequences for modeling social preferences, we aim to improve the accuracy of interest prediction. Additionally, the project explores the generalization capabilities, long-context awareness, and end-to-end modeling strengths of large models to simplify the e-commerce recommendation chains, enhance adaptability to real-time changes, and improve exploratory recommendation effectiveness. The ultimate goal is to build a more streamlined system with more accurate recommendations, enhancing user experience and retention while driving sustainable business growth. 团队介绍 : TikTok是一个覆盖150个国家和地区的国际短视频平台,我们希望通过TikTok发现真实、有趣的瞬间,让生活更美好。TikTok 在全球各地设有办公室,全球总部位于洛杉矶和新加坡,办公地点还包括纽约、伦敦、都柏林、巴黎、柏林、迪拜、雅加达、首尔和东京等多个城市。 TikTok研发团队,旨在实现TikTok业务的研发工作,搭建及维护业界领先的产品。加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,支持产品在全球赛道上高速发展;也能接触到包括服务架构、基础技术等方向上的技术挑战,保障业务持续高质量、高效率、且安全地为用户服务;同时还能为不同业务场景提供全面的技术解决方案,优化各项产品指标及用户体验。 在这里, 有大牛带队与大家一同不断探索前沿, 突破想象空间。 在这里,你的每一行代码都将服务亿万用户。在这里,团队专业且纯粹,合作氛围平等且轻松。 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。

更新于 2025-05-26新加坡
logo of bytedance
社招A137488

团队介绍:国际化短视频搜索团队主要负责国际化短视频的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括: 1、探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战; 2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力; 3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你; 4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新。 主要负责: 1、参与国际化短视频,以及国际化短电商,生活服务等重点业务的搜索推荐模型和策略改进,负责这些业务的搜索流量和用户渗透增长 & 搜索心智建设任务; 2、以推荐算法为核心技术栈,改进基于超大规模机器学习模型的推荐系统,覆盖从候选挖掘到召回,粗排,精排,多目标融合全链路技术环节; 3、探索短文本推荐和通用推荐技术的上限,重点是推荐和NLP技术的联合应用,以及多模态等前沿技术的探索。 业务介绍 1、搜索增长业务:团队负责的功能和场景,基本覆盖了绝大多数的搜索流量并且是过去TikTok搜索流量增长的最大原因。手段包含引导/激发/便捷化搜索发生之前的全流程,如主feed里视频/评论激发的推荐query场景,搜索前的输入补全和搜索后的结果相关搜索场景。 不仅为搜索带来更多流量,也使得流量本身的单位价值更高; 2、电商搜索增长业务:电商是app重要的变现手段,搜索作为其中货架心智建设的关键一环,电商搜索流量的增长和心智的建立,在其中起到重要作用; 3、搜索与端的结合:作为搜索业务,同样负责fyp排序里搜索相关的排序逻辑,改变端的生态激发用户搜索探索更多内容的意愿。并且用用户的搜索行为,为用户提供更好的feed浏览体验。

更新于 2023-08-14北京
logo of bytedance
校招A234692

Team Introduction: Research & Development (R&D) Team: The R&D team is dedicated to building and maintaining industry-leading products that drive the success of global business. By joining us, you'll work on core scenarios such as user growth, social features, live streaming, e-commerce consumer side, content creation, and content consumption, helping our products scale rapidly across global markets. You'll also face deep technical challenges in areas like service architecture and infrastructure engineering, ensuring our systems operate with high quality, efficiency, and security. Meanwhile, our team also provides comprehensive technical solutions across diverse business needs, continuously optimizing product metrics and improving user experience. Research Project Introduction: As the world's leading short-video platform, we faces multiple challenges in its recommendation systems, including data sparsity for new users leading to insufficient personalisation, high timeliness requirements for live steaming recommendations, difficulty in maintaining user interest diversity, and complex e-commerce recommendation system chains. Traditional recommendation methods heavily rely on historical behaviour modeling, which struggles with the cold-start problem for new users. Live-streaming recommendations demand real-time responsiveness to rapidly changing content dynamics (e.g., host interactions, traffic fluctuations) within extremely short time windows (typically within 30 minutes) posing higher demands on the system's real-time perception and decision-making capabilities. Additionally, the immersive single-feed format amplifies the challenge of maintaining content diversity, requiring a careful balance between multi-interest learning and the risk of content drift caused by exploratory recommendations. The current e-commerce recommendation system follows a multi-stage funnel architecture (recall–ranking–re-ranking), which often leads to inconsistent chains, high maintenance costs, and an overreliance on short-term value prediction. This leads users to fall into content homogenization fatigue. To address these pain points, this project proposes leveraging large language models (LLMs) and large model technologies to achieve significant breakthroughs. On one hand, LLMs—with their vast knowledge base and few-shot reasoning capabilities—can infer new users' potential intentions from registration data and external knowledge, thereby alleviating cold-start issues. On the other hand, by integrating graph neural networks (GNNs) and full-lifecycle user behavior sequences for modeling social preferences, we aim to improve the accuracy of interest prediction. Additionally, the project explores the generalization capabilities, long-context awareness, and end-to-end modeling strengths of large models to simplify the e-commerce recommendation chains, enhance adaptability to real-time changes, and improve exploratory recommendation effectiveness. The ultimate goal is to build a more streamlined system with more accurate recommendations, enhancing user experience and retention while driving sustainable business growth. 团队介绍: TikTok是一个覆盖150个国家和地区的国际短视频平台,我们希望通过TikTok发现真实、有趣的瞬间,让生活更美好。TikTok 在全球各地设有办公室,全球总部位于洛杉矶和新加坡,办公地点还包括纽约、伦敦、都柏林、巴黎、柏林、迪拜、雅加达、首尔和东京等多个城市。 TikTok研发团队,旨在实现TikTok业务的研发工作,搭建及维护业界领先的产品。加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,支持产品在全球赛道上高速发展;也能接触到包括服务架构、基础技术等方向上的技术挑战,保障业务持续高质量、高效率、且安全地为用户服务;同时还能为不同业务场景提供全面的技术解决方案,优化各项产品指标及用户体验。 在这里, 有大牛带队与大家一同不断探索前沿, 突破想象空间。 在这里,你的每一行代码都将服务亿万用户。在这里,团队专业且纯粹,合作氛围平等且轻松。目前在北京,上海,杭州、广州、深圳分别开放多个岗位机会。 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。

更新于 2025-05-28新加坡
logo of bytedance
校招A202686

Team Introduction Our E-commerce is a content-driven commerce business built on globally-oriented short video platforms. Our mission is to become the go-to platform for users to discover and access high-quality products at great prices. Through multiple scenarios such as livestream e-commerce and video e-commerce, we aim to deliver a more personalized, proactive, and efficient shopping experience for users, while offering merchants a reliable platform to grow their business. We are committed to making great-value products easy to sell and easy to find across more regions, bringing a better life within reach for everyone. We invite you to grow with us, explore, innovate, and unlock your full potential as we tackle both technical and business challenges together. Our team brings rich experience in international product development, embraces diverse cultures, and operates R&D teams across the globe. Join us in facing the exciting challenges of cross-border collaboration, with opportunities for business travel and international assignments waiting for you! Project Introduction: As the world's leading short-video platform, TikTok faces multiple challenges in its recommendation systems, including data sparsity for new users leading to insufficient personalisation, high timeliness requirements for live steaming recommendations, difficulty in maintaining user interest diversity, and complex e-commerce recommendation system chains. Traditional recommendation methods heavily rely on historical behaviour modeling, which struggles with the cold-start problem for new users. Live-streaming recommendations demand real-time responsiveness to rapidly changing content dynamics (e.g., host interactions, traffic fluctuations) within extremely short time windows (typically within 30 minutes) posing higher demands on the system's real-time perception and decision-making capabilities. Additionally, the immersive single-feed format amplifies the challenge of maintaining content diversity, requiring a careful balance between multi-interest learning and the risk of content drift caused by exploratory recommendations. The current e-commerce recommendation system follows a multi-stage funnel architecture (recall–ranking–re-ranking), which often leads to inconsistent chains, high maintenance costs, and an overreliance on short-term value prediction. This leads users to fall into content homogenization fatigue. To address these pain points, this project proposes leveraging large language models (LLMs) and large model technologies to achieve significant breakthroughs. On one hand, LLMs—with their vast knowledge base and few-shot reasoning capabilities—can infer new users' potential intentions from registration data and external knowledge, thereby alleviating cold-start issues. On the other hand, by integrating graph neural networks (GNNs) and full-lifecycle user behavior sequences for modeling social preferences, we aim to improve the accuracy of interest prediction. Additionally, the project explores the generalization capabilities, long-context awareness, and end-to-end modeling strengths of large models to simplify the e-commerce recommendation chains, enhance adaptability to real-time changes, and improve exploratory recommendation effectiveness. The ultimate goal is to build a more streamlined system with more accurate recommendations, enhancing user experience and retention while driving sustainable business growth. 团队介绍 : 国际电商是以国际化短视频产品为载体的内容电商业务,致力于成为用户发现并获取优价好物的首选平台,在直播电商、视频内容电商等多场景下,国际电商业务希望能为用户提供更个性化、更主动、更高效的消费体验,为商家提供稳定可靠的平台服务,在更多的地区实现没有难卖的优价好物,让美好生活触手可得的使命。我们邀请你来此成长、钻研,发掘无限的潜力,一起应对技术和业务上的挑战。目前团队拥有丰富的国际化产品研发经验,包容多元的文化,且在全球设立研发团队,邀请你来一起接受跨国合作的挑战,还有出差外派机会在等你! 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。

更新于 2025-05-26新加坡