百度交通数据挖掘工程师(J69943)
任职要求
-计算机相关专业本科及以上学历 -具有良好的编程能力、数据结构和算法能力,掌握C++/Python等至少一门编程语言,熟悉Linux工作环境 -熟悉数据挖掘工程,可以熟练…
工作职责
-基于百度L4海量的感知数据,进行数据模型设计、ETL开发,实现自动化入库 -应用机器学习技术,建立交通数据画像,提升基础数据服务能力 -研究时空领域的关键机器学习算法,以及产品化赋能无人车业务 -其它相关工作

WeRide.ai is looking for an Engineering Tech Lead to join our Simulation team and help build the next generation of autonomous driving Simulation Engine, Algorithm and Modeling. What you will do: 1.Oversee WeRide’s Simulation direction, lead and grow algorithm team in this scope 2.Define roadmaps, drive technical projects and provide leadership in an innovative and fast-paced environment. 3.Design, implement and optimize existing and next-generation of Simulation Algorithm and Modeling, including agent (vehicle/pedestrian/cyclist/…) behavior modeling, evaluation modeling and scenario-based data mining. 4.Build tools and automation pipelines to process large-scale real-world traffic data for model training. 5.Work across teams to facilitate safe and fast iteration of the autonomous driving software components: perception, motion planning, control, localization, and other.

1、研发基于VLM/多模态大模型的数据挖掘算法,精准识别自动驾驶长尾场景(如极端天气、复杂交通参与行为、罕见障碍物等)。 2、构建高效的自动化数据挖掘Pipeline,提升数据标签质量并降低标注成本。 3、 结合点云、图像、文本等多模态数据,设计多模态特征,支持数据的跨模态检索

1、研发基于VLM/多模态大模型的数据挖掘算法,精准识别自动驾驶长尾场景(如极端天气、复杂交通参与行为、罕见障碍物等); 2、构建高效的自动化数据挖掘Pipeline,提升数据标签质量并降低标注成本; 3、结合点云、图像、文本等多模态数据,设计多模态特征,支持数据的跨模态检索;