百度用户增长算法工程师(J84253)
社招全职MEG地点:北京状态:招聘
任职要求
-具备大规模数据挖掘/计算广告/广告投放/搜索引擎/推荐系统的研发经验 -具备至少一项自然语言处理、图像处理、信息过滤、主题提取、分类聚类、个性化用户建模、文本挖掘等相关领域知识 -熟悉深度学习算法,熟悉至少一种主流深度学习编程框架(TensorFlow/PyTorch/Paddle) - 掌握因果推断,具备优惠券/积分策略、智能发券、激励任务系统等相关经验者优先 -具备优秀的编码能力和扎实的数据结构和算法功底 -良好的逻辑思维能力,和数据敏感度,能能够从海量数据中发现有价值的规律 -优秀的分析和解决问题的能力,对挑战性问题充满激情 -良好的团队合作精神,较强的沟通能力
工作职责
-负责机器学习算法研发,为百度APP产品提供增长算法策略支持,为增长各个环节提供个性化推荐和个性化出价策略 -负责用户定向模型、算法研发,包括构建用户活跃度模型、用户价值模型、用户兴趣模型等 -负责物料挖掘算法研发,包括构建物料召回算法、排序算法、点击率预估模型等 -负责激励&活动算法研发,包括人群、发放、提现算法等
包括英文材料
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
推荐系统+
[英文] Recommender Systems
https://www.d2l.ai/chapter_recommender-systems/index.html
Recommender systems are widely employed in industry and are ubiquitous in our daily lives.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
图像处理+
https://opencv.org/blog/computer-vision-and-image-processing/
This fascinating journey involves two key fields: Computer Vision and Image Processing.
https://www.geeksforgeeks.org/python/image-processing-in-python/
Image processing involves analyzing and modifying digital images using computer algorithms.
https://www.youtube.com/watch?v=kSqxn6zGE0c
In this Introduction to Image Processing with Python, kaggle grandmaster Rob Mulla shows how to work with image data in python!
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
PaddlePaddle+
https://learnopencv.com/paddlepaddle/
PaddlePaddle (PArallel Distributed Deep LEarning) is an open-source deep learning framework released by Baidu in 2016.
https://www.paddlepaddle.org.cn/tutorials
本课程采用飞桨特色的「横纵式」 教学法,从易到难,学习难度逐层递进,并结合图形和案例进行讲解,力求让刚接触深度学习的读者可以快速理解。
因果推断+
https://web.stanford.edu/~swager/causal_inf_book.pdf
How best to understand and characterize causality is an age-old question in philosophy.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
相关职位
社招MEG
-负责机器学习算法研发,为百度APP产品提供增长算法策略支持,为增长各个环节提供个性化推荐和个性化出价策略 -负责用户定向模型、算法研发,包括构建用户活跃度模型、用户价值模型、用户兴趣模型等 -负责物料挖掘算法研发,包括构建物料召回算法、排序算法、点击率预估模型等 -负责激励&活动算法研发,包括人群、发放、提现算法等
更新于 2025-04-10
社招MEG
-角色和剧本模型训练:优化角色和剧本类大模型的行为策略、长期记忆管理和多模态交互能力,突破角色行为一致性、情感表达合理性等技术瓶颈 -前沿探索:研究人格化模型在情感计算、社会常识推理等方向的突破,定义 AI 角色从「功能执行」到「人格化陪伴」的技术范式 -极致性能优化:大规模模型的分布式训练优化,提升角色类模型的推理效率与资源利用率,指令微调、偏好对齐、数据增强等技术的场景化创新 -规模增长:通过传统搜索、信息流等途径结合用户分析进行产品用户规模增长
更新于 2025-04-01
社招A257065
1、深入业务场景,和产品、运营配合,优化产品设计和营销方案; 2、研究数据挖掘或统计学习领域的前沿技术,构建和优化用户画像; 3、针对具体业务目标建模优化,包括但不限于广告投放、人群分层、信用评分、成本优化等; 4、深度探索财经用户增长的数据、策略、算法,提升用户增长、转化的效率。
更新于 2023-09-25