快手(可灵AI专项)模型优化算法工程师
社招全职3-5年D11722地点:北京状态:招聘
任职要求
1、硕士及以上学历,数学、计算机、自动化、电子等专业优先; 2、掌握扩散模型原理和压缩加速手段(如: 步数蒸馏,包括CM / score-distillation ), 具备公式推导和证明能力, 有过相关的研究经历和实践经验者优化; 3、有过使用 DPO / LoRA 等技术对模型进行轻量微调者优先; 4、熟练掌握线性线数, 概率论, 信息论, 凸优化等基础知识,了解矩阵论, 随机过程等; 5、精通pytorch, 熟练大模型并行框架的使用(如: deepspeed / megatron); 6、精通python, 掌握triton和c++, 了解CUDA或有实践经验者优先。
工作职责
1、负责快手可灵/可图大模型的实时化加速需求, 包括但不限于推理步数优化, 稀疏attn, 超分等; 2、负责大模型的无损压缩微调训练, 包括但不限于实现 低精度QAT训练, LoRA/DPO微调等 ; 3、负责快手内部文本及多模态大模型的优化需求, 包括但不限于: LLM吞吐/延时优化, 长文本 KV-cache 优化, LLM 显存优化。
包括英文材料
缓存+
https://hackernoon.com/the-system-design-cheat-sheet-cache
The cache is a layer that stores a subset of data, typically the most frequently accessed or essential information, in a location quicker to access than its primary storage location.
https://www.youtube.com/watch?v=bP4BeUjNkXc
Caching strategies, Distributed Caching, Eviction Policies, Write-Through Cache and Least Recently Used (LRU) cache are all important terms when it comes to designing an efficient system with a caching layer.
https://www.youtube.com/watch?v=dGAgxozNWFE
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
系统设计+
https://roadmap.sh/system-design
Everything you need to know about designing large scale systems.
https://www.youtube.com/watch?v=F2FmTdLtb_4
This complete system design tutorial covers scalability, reliability, data handling, and high-level architecture with clear explanations, real-world examples, and practical strategies.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
DeepSpeed+
https://www.youtube.com/watch?v=pDGI668pNg0
Megatron+
https://www.youtube.com/watch?v=hc0u4avAkuM
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
学历+
相关职位
社招3-5年D4124
1、大规模视频理解:负责可灵海量视频数据的打标分类、语义分割、文字识别、Caption生成、聚类分析等工作; 2、模型开发与优化:基于CNN、VLM等技术推进模型训练、微调、评测及高效部署,推动模型在实际场景中的大规模应用; 3、技术研究与创新:聚焦多模态视频生成领域前沿课题,探索生成模型的数据采样技术,提升生成模型的数据使用效率和语义响应能力,打造在业界的领先技术优势; 4、跨领域协作:参与跨团队跨部门技术协同,推动Human in the loop在视频生成领域的研究落地。
更新于 2025-08-04
社招3年以上D4124
1、大规模视频理解:负责可灵海量视频数据的打标分类、语义分割、文字识别、Caption生成、聚类分析等工作; 2、模型开发与优化:基于CNN、VLM等技术推进模型训练、微调、评测及高效部署,推动模型在实际场景中的大规模应用; 3、技术研究与创新:聚焦多模态视频生成领域前沿课题,探索生成模型的数据采样技术,提升生成模型的数据使用效率和语义响应能力,打造在业界的领先技术优势; 4、跨领域协作:参与跨团队跨部门技术协同,推动Human in the loop在视频生成领域的研究落地。
更新于 2025-07-15
社招3-5年D4131
1、从事AIGC领域的算法探索和落地开发,负责项目规划与前沿技术推进;负责视觉生成基础模型的框架设计与预训练,以及面向实际应用的优化; 2、研发方向包括但不限于图像/视频/3D图形的生成,重点解决低成本、高品质生成以及可控编辑等关键问题。
更新于 2025-08-29