快手策略算法工程师-【本地生活】
社招全职3-5年D10702地点:北京状态:招聘
任职要求
1、计算机科学、数据科学、人工智能、数学等相关专业,具备较好的数据分析和统计学基础,熟练使用python、SQL语言,掌握常见的可视化工具; 2、具备机器学习或者数据挖掘的研究和项目背景;熟练掌握分类、回归、聚类等机器学习模型,能够把业务问题拆解成适合的数据、算法问题,并完成价值落地; 3、做事具备主动推进意识,注重落地实际效果,追求质感和业务价值。 加分项: 1、有深度学习/机器学习相关的科研和探索经历,在CV、NLP、多模态、机器学习等相关领域有高质量论文发表,或者数学建模、机器学习竞赛有获奖经历优先; 2、对大模型的原理和应用有兴趣和实践经历,热爱并经常使用AI类产品比如Cursor、可灵、即梦等优先。
工作职责
随本地生活业务多场景AI落地,构建AIGC、B/C端等智能服务的数据飞轮,主要工作涉及: 1、 用户数据分析和策略制定:分析用户交互数据和转化数据,评估不同商品和不同视频内容下用户的转化情况,制定选品、价格和内容优化策略; 2、 优化模型生成效果:负责模型训练数据构建与管理,参与数据筛选、标注及评测体系构建工作。分析和挖掘现有数据资源,通过数据驱动的方法优化,结合A/B测试等手段验证调整效果。
包括英文材料
数据科学+
https://roadmap.sh/ai-data-scientist
Step by step roadmap guide to becoming an AI and Data Scientist
数据分析+
[英文] Data Analyst Roadmap
https://roadmap.sh/data-analyst
Step by step guide to becoming an Data Analyst in 2025
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
相关职位
社招A153031A
1、负责字节跳动本地与线索行业全域投放策略,围绕全域框架,提升客户投广带来的自然协同能力; 2、负责字节跳动本地与线索行业机制策略,比如线索获取/线索意向/到店等出价产品策略优化,通过满足广告主多场景下的预算表达诉求,长期提升平台收入; 3、负责字节跳动本地与线索行业商家投放体验优化,降低商家广告投放操作成本,提升商家投放生态体验; 4、负责字节跳动本地与线索行业商家场景化营销建设,通过优化货品/优惠券等方向,提升商家营销能力。
更新于 2025-04-18
社招A178498
1、负责字节跳动本地与线索行业全域投放策略,围绕全域框架,提升客户投广带来的自然协同能力; 2、负责字节跳动本地与线索行业机制策略,比如线索获取/线索意向/到店等出价产品策略优化,通过满足广告主多场景下的预算表达诉求,长期提升平台收入; 3、负责字节跳动本地与线索行业商家投放体验优化,降低商家广告投放操作成本,提升商家投放生态体验; 4、负责字节跳动本地与线索行业商家场景化营销建设,通过优化货品/优惠券等方向,赋能商家营销能力。
更新于 2025-04-18
社招2年以上D6307
1、负责本地生活类广告核心业务策略及机制的设计,提升流量变现效率,推动业务消耗规模增长; 2、优化到餐、到综、酒旅等重点行业客户营销推广效果,实现广告客户增长、留存与营销效率提升,客户差异化策略产品研发; 3、优化本地广告召回、CTR、CVR等召回排序核心模型,运用大规模深度学习技术提高模型预估准确度,提高流量分发效率。
更新于 2025-03-05