
搜狐(社招/校招)推荐算法工程师
社招全职智能平台地点:北京状态:招聘
任职要求
1.计算机科学、人工智能、机器学习、数据科学、统计或相关专业硕士及以上学历; 2.深入掌握机器学习、深度学习、数据挖掘的核心理论,并在至少一个推荐相关的关键技术方向 (如序列建模、多目标优化、冷启动、大模型推荐等) 具有扎实的理论根基或研究经历; 3..熟练掌握 Python、C++ 等编程语言,精通至少一种深度学习框架(PyTorch/TensorFlow/JAX 等 ),具备优秀的模型开发、实验设计与工程实现能力,可独立完成算法调试与优化; 4.有在国际顶级学术会议(KDD, WWW, RecSys, SIGIR等)发表论文经验者优先,熟悉学术论文写作规范与流程; 5.具备强烈的探索欲与创新思维,擅长独立思考,面对复杂技术问题可提出创新性解决方案,有挑战行业技术难题的热情; 6.拥有良好的团队协作与沟通能力,可高效开展跨领域技术交流,推动团队技术共识达成;对 AI 技术赋能各行业有浓厚兴趣与探索意愿。
工作职责
我们正在寻找充满热情、具备深厚研究潜力的应届毕业生加入我们,共同探索下一代推荐系统的边界。你将置身于推荐领域的最前沿,不仅解决当下的业务挑战,更致力于定义未来的推荐范式,将最新的学术突破转化为具有重大影响力的用户产品体验。 : 1.参与搜狐新闻App核心召回、排序、混排、冷启动等关键推荐算法模块的研发、优化与持续迭代, 直接提升新闻推荐的精准性、个性化和用户体验; 2.聚焦大模型驱动推荐、多模态内容理解与推荐、强化学习/序列决策推荐、多智能体协同推荐等前沿方向,开展深度研究与创新实验,产出具有技术突破性和潜在业务颠覆性的研究成果; 3.负责将前沿推荐算法研究成果(如新模型、新策略、新机制)在真实业务场景中进行快速原型验证与工程化实现,评估其实际性能与可行性,推动关键技术在实际推荐系统的落地应用; 4.紧密追踪国际顶级会议(如 KDD, WWW, RecSys, NeurIPS等)在推荐系统、机器学习及相关领域的最新进展,深入解读前沿论文,定期组织内部分享,推动团队技术视野的持续拓展; 5.积极总结研究与实践成果,参与撰写高质量技术报告,并鼓励向顶级学术会议/期刊投稿,提升团队在推荐技术领域的学术影响力和技术品牌;
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据科学+
https://roadmap.sh/ai-data-scientist
Step by step roadmap guide to becoming an AI and Data Scientist
学历+
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
JAX+
https://docs.jax.dev/en/latest/notebooks/thinking_in_jax.html
JAX is a library for array-oriented numerical computation, with automatic differentiation and JIT compilation to enable high-performance machine learning research.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
RecSys+
[英文] Recommender Systems
https://recsys.acm.org/
This site contains information about the ACM Recommender Systems community, the annual ACM RecSys conferences, and more.
相关职位

社招智能媒体研发中心
推荐算法研究员 1、负责推荐系统的算法研发工作,包括但不限于用户兴趣建模、协同过滤、深度排序模型等,持续提升推荐效果和用户体验; 2、利用大规模数据处理技术,对用户行为数据进行深入分析,构建和优化用户画像; 2、与其他团队协作,根据业务需求调整和优化推荐策略,提升用户参与度和留存率; 3、跟踪推荐算法领域的最新研究进展,包括生成式推荐、多模态推荐、意图识别建模,将先进技术应用到实际产品中。
更新于 2025-08-19
社招1年以上听一听技术
1.负责微信音乐场景推荐效果优化,根据实际从策略、样本、特征、模型结构等维度,提升业务消费和生态指标; 2.跟踪业界最新研究成果,包括LLM4Rec、推荐大模型、生成式推荐等方向,帮助提升用户体验和消费指标。
更新于 2025-09-11