滴滴高级/资深算法工程师-司乘安全(J241106018)
社招全职2年以上技术地点:北京状态:招聘
任职要求
1.2年以上工作经验,人工智能、计算机相关专业,对机器学习基础算法有深入理解,如特征工程、GBDT、Transformer等; 2.在数据挖掘、NLP等方向有应用算法解决实际问题经验者优先; 3.严密的逻辑推导能力,清晰的表达能力,敏锐的数据和业务sense; 4.熟悉python、hadoop/hive/spark、linux开发环境,动手能力强。
工作职责
我们是滴滴网约车的安全技术团队,致力于打造世界顶尖的智能出行平台。我们不断探索机器学习等前沿技术,基于海量的出行数据和丰富的业务场景,进行出行生态算法优化与体系搭建。我们强调数据驱动和业务价值,真正在解决人们出行过程中的真实问题,保障司乘的出行体验与安全,引领出行行业变革与发展。 工作职责具体包括: 1.负责出行生态安全场景的算法优化与体系搭建,包括但不限于司乘行程人身安全,司机线上线下的安全群体事件等; 2.运用机器学习、统计学、大模型等专业知识,不断优化海量订单的风险识别策略; 3.基于深刻的业务理解和case分析,不断挖掘和提升多模态的底层元能力; 4.构建高效的策略系统和评估体系,解决实际问题的同时沉淀高效的智能决策系统。 技术挑战/吸引点: 1.有技术挑战:极小样本的问题,每天需要从海量订单中排查出极少的风险订单,需要成体系的策略和模型建设。 2.有技术宽度:技术比较宽,有视频、音频、文本、轨迹,也有订单和司乘画像等结构化信息,既是天然的多模态感知和融合的场景,也需要传统的机器学习、深度学习、策略设计,技术宽度非常宽,技术抓手比较丰富。 3.有技术深度:有丰富的多模态数据,是天然适合大模型的应用场景,在通过大模型建设基础能力和端到端的识别能力上有深度的探索。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
特征工程+
https://www.ibm.com/think/topics/feature-engineering
Feature engineering preprocesses raw data into a machine-readable format. It optimizes ML model performance by transforming and selecting relevant features.
https://www.kaggle.com/learn/feature-engineering
Better features make better models. Discover how to get the most out of your data.
GBDT+
https://developers.google.com/machine-learning/decision-forests/intro-to-gbdt
Like bagging and boosting, gradient boosting is a methodology applied on top of another machine learning algorithm.
https://scikit-learn.org/stable/modules/ensemble.html
Ensemble methods combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
相关职位
社招技术
我们是滴滴网约车MPT团队,致力于打造世界顶尖的智能交易平台,包括订单分配,司机调度,拼车,定价,补贴等方向,通过不断探索机器学习、强化学习等前沿技术,完善交易市场设计,实现资源最优化分配,力求解决正在发生的以及潜在供需失衡的状况,最大程度满足平台多样化的出行需求,持续优化乘客体验和保障司机收入,提升业务经营效率,引领出行行业变革与发展。 岗位要求: 1.研究包括独乘、拼乘模式下的各种交易匹配、分单调度、乘客预期等算法,持续提升核心交易效率。 2.利用因果推断、运筹规划、机器学习等技术,提升供需预测、补贴定价等运营核心算法效果 3.利用算法技术实现集团各业务线用户的高效增长,优化流量运营效率 4.通过机器学习技术解决司乘纠纷和体验问题,打造良好司乘体验和平台秩序,构建司乘公平的判责能力,守护司乘的安全。 欢迎对技术有追求、对业务有担当的小伙伴加入MPT大家庭,共建交易市场技术方向,为“让出行更美好”贡献一份力量。
更新于 2025-09-22
社招技术类
1. 负责B站商业化策略算法研发,优化模型算法和策略机制,提高广告变现效率,提升用户体验,优化商业生态 2. 结合业务需求,对用户及内容数据进行挖掘和建模,优化用户和内容画像 2. 跟踪学习相关领域前沿进展,实现技术突破和业务落地
更新于 2025-04-15

社招3年以上技术
工作职责: 主要负责地图相关算法开发,支撑哈啰相关业务地图算法,包括共享单车、打车、顺风车、电动车等等业务场景,包括但不局限于如下方向: 1)负责地图定位算法,包括两轮车辆定位、顺风车打车定位相关算法 2)负责打车上车点推荐、目的地预测、ETA预估、用户出行行为习惯挖掘等等相关地图算法 3)负责底层地图对外服务能力建设,路径规划、轨迹挖掘等算法
更新于 2024-03-08