滴滴(资深/高级)数据仓库研发工程师(J250626017)
社招全职3年以上技术地点:北京状态:招聘
任职要求
1. 统招本科及以上学历,计算机等相关专业; 3年及以上的互联网数据仓库开发工作经验,对业务和数据敏感 2. 熟悉大数据处理架构(如Flink、Spark Streaming、Kafka Streams等),熟悉数据集成解决方案,实现跨平台、跨系统的数据ETL。 3. 熟悉 MySQL、Redis、HBase、ClickHouse/Doris 等存储技术。能优化实时数据查询性能(如预聚合、索引优化)。 4. 精通 SQL,能编写复杂数据处理逻辑(如窗口函数、CDC 处理)。熟练使用 Python/Java/Scala 至少一种语言,能开发高效的数据清洗脚本。 5. 具备 非结构化/半结构化数据(JSON、XML、日志、文本等)解析和清洗经验。熟练使用 正则表达式、ETL 工具(如 Logstash、NiFi)、UDF 开发等技术进行数据规范化处理。 6. 熟悉 Linux 环境,具备 集群监控(Prometheus/Grafana)、故障排查 经验。 【加分项】 1. 具备国际化风控业务经验优先 2. 有算法经验者优先 3. 了解爬虫极其数据处理经验者优先 4. 了解图数据库、向量数据库这优先 5. 因为会与国外同事交流,或有国外出差机会,英语水平流利者为佳。
工作职责
1. 深入理解滴滴海外业务模式、流程和系统架构,和相关产品技术、业务运营高效沟通,设计合理的数据仓库架构。 2. 充分利用滴滴现有的各种数据仓库及反作弊处理平台,设计、开发和维护高效、可扩展的大数据处理系统,以支持安全反作弊业务的数据驱动决策和业务发展。设计并优化离线/实时数仓模型(如 ODS、DWD、DWS、ADS 分层),支持实时报表、监控和风控等场景。 3. 对多源异构数据(日志、事件消息、API、爬虫数据等)进行清洗、解析和结构化处理,提取关键业务信息。解决数据清洗中的 脏数据、格式混乱、缺失值、重复数据 等问题,提升数据质量。与数据开发、算法、业务团队协作,理解需求并构建高效的数据处理流程。 4. 跟踪大数据领域的新技术、新工具,不断探索并引入以提升团队的技术能力和项目效率。优化流式计算任务的 资源利用率(如 Flink 任务调优、Kafka 分区策略调整)。 5. 国际化安全反作弊技术团队其他开发工作。
包括英文材料
学历+
数据仓库+
https://www.youtube.com/watch?v=9GVqKuTVANE
From Zero to Data Warehouse Hero: A Full SQL Project Walkthrough and Real Industry Experience!
https://www.youtube.com/watch?v=k4tK2ttdSDg
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Kafka+
https://developer.confluent.io/what-is-apache-kafka/
https://www.youtube.com/watch?v=CU44hKLMg7k
https://www.youtube.com/watch?v=j4bqyAMMb7o&list=PLa7VYi0yPIH0KbnJQcMv5N9iW8HkZHztH
In this Apache Kafka fundamentals course, we introduce you to the basic Apache Kafka elements and APIs, as well as the broader Kafka ecosystem.
ETL+
https://www.ibm.com/think/topics/etl
ETL—meaning extract, transform, load—is a data integration process that combines, cleans and organizes data from multiple sources into a single, consistent data set for storage in a data warehouse, data lake or other target system.
https://www.youtube.com/watch?v=OW5OgsLpDCQ
It explains what ETL is and what it can do for you to improve your data analysis and productivity.
MySQL+
https://juejin.cn/post/7190306988939542585
这是一篇 MySQL 通关一篇过硬核经验学习路线,包括数据库相关知识,SQL语句的使用,数据库约束,设计等。
[英文] MySQL Tutorial
https://www.mysqltutorial.org/
your go-to resource for mastering MySQL in a fast, easy, and enjoyable way.
https://www.youtube.com/watch?v=5OdVJbNCSso
MySQL SQL tutorial for beginners
https://www.youtube.com/watch?v=7S_tz1z_5bA
This beginner-friendly course teaches you SQL from scratch.
Redis+
[英文] Developer Hub
https://redis.io/dev/
Get all the tutorials, learning paths, and more you need to start building—fast.
https://www.runoob.com/redis/redis-tutorial.html
REmote DIctionary Server(Redis) 是一个由 Salvatore Sanfilippo 写的 key-value 存储系统,是跨平台的非关系型数据库。
https://www.youtube.com/watch?v=jgpVdJB2sKQ
In this video I will be covering Redis in depth from how to install it, what commands you can use, all the way to how to use it in a real world project.
HBase+
[英文] HBase Tutorial
https://www.tutorialspoint.com/hbase/index.htm
HBase is a data model that is similar to Google's big table designed to provide quick random access to huge amounts of structured data. This tutorial provides an introduction to HBase, the procedures to set up HBase on Hadoop File Systems, and ways to interact with HBase shell.
ClickHouse+
[英文] Advanced Tutorial
https://clickhouse.com/docs/tutorial
Learn how to ingest and query data in ClickHouse using the New York City taxi example dataset.
https://www.youtube.com/watch?v=FtoWGT7kS-c
ClickHouse is an open-source column-oriented DBMS for online analytical processing that allows users to generate analytical reports using SQL queries in real-time.
https://www.youtube.com/watch?v=Rhe-kUyrFUE&list=PL0Z2YDlm0b3gcY5R_MUo4fT5bPqUQ66ep
Doris+
https://doris.apache.org/docs/gettingStarted/what-is-apache-doris
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Scala+
脚本+
[英文] Scripting language
https://en.wikipedia.org/wiki/Scripting_language
https://zhuanlan.zhihu.com/p/571097954
一个脚本通常是解释执行而非编译。脚本语言通常都有简单、易学、易用的特性,目的就是希望能让程序员快速完成程序的编写工作。
JSON+
https://developer.mozilla.org/zh-CN/docs/Learn_web_development/Core/Scripting/JSON
用于将结构化数据表示为 JavaScript 对象的标准格式,通常用于在网站上表示和传输数据(例如从服务器向客户端发送一些数据,因此可以将其显示在网页上)。
XML+
https://developer.mozilla.org/zh-CN/docs/Web/XML/Guides/XML_introduction
XML(Extensible Markup Language)是一种类似于 HTML,但是没有使用预定义标记的语言。
Logstash+
https://logz.io/blog/logstash-tutorial/
Logstash is the “L” in the ELK Stack — the world’s most popular log analysis platform and is responsible for aggregating data from different sources, processing it, and sending it down the pipeline, usually to be directly indexed in Elasticsearch.
https://www.elastic.co/docs/reference/logstash/getting-started-with-logstash
This section guides you through the process of installing Logstash and verifying that everything is running properly.
https://www.youtube.com/watch?v=GLWmWfq-V7Y
https://www.youtube.com/watch?v=PjFvTXxCGbE
Welcome to this comprehensive guide where I will show you how to seamlessly install Logstash on your RedHat 9 System!
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
Prometheus+
https://grafana.com/docs/grafana/latest/getting-started/get-started-grafana-prometheus/
Prometheus is an open source monitoring system for which Grafana provides out-of-the-box support.
https://prometheus.io/docs/tutorials/getting_started/
Prometheus is a system monitoring and alerting system.
Grafana+
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
相关职位
社招3年以上技术
1. 深入理解滴滴海外业务模式、流程和系统架构,和相关产品技术、业务运营高效沟通,设计合理的数据仓库架构。 2. 充分利用滴滴现有的各种数据仓库及反作弊处理平台,设计、开发和维护高效、可扩展的大数据处理系统,以支持安全反作弊业务的数据驱动决策和业务发展。设计并优化离线/实时数仓模型(如 ODS、DWD、DWS、ADS 分层),支持实时报表、监控和风控等场景。 3. 对多源异构数据(日志、事件消息、API、爬虫数据等)进行清洗、解析和结构化处理,提取关键业务信息。解决数据清洗中的 脏数据、格式混乱、缺失值、重复数据 等问题,提升数据质量。与数据开发、算法、业务团队协作,理解需求并构建高效的数据处理流程。 4. 跟踪大数据领域的新技术、新工具,不断探索并引入以提升团队的技术能力和项目效率。优化流式计算任务的 资源利用率(如 Flink 任务调优、Kafka 分区策略调整)。 5. 国际化安全反作弊技术团队其他开发工作。
更新于 2025-06-16
社招技术
岗位职责: 1、参与滴滴网约车业务数据建设,负责某一业务子方向的数据开发工作; 2、能够深入了解负责方向业务特点,结合数仓建模理论,进行具体的模型抽象与设计; 3、数据仓库ETL流程的优化及解决相关技术问题,在稳定性、扩展性、成本等角度有自己的思考与实践; 4、通过深入理解业务特点,通过数据建设为业务赋能,创造业务价值;
更新于 2025-09-03
社招技术
1、参与滴滴网约车业务数据建设,负责某一业务子方向的数据开发工作; 2、能够深入了解负责方向业务特点,结合数仓建模理论,进行具体的模型抽象与设计; 3、数据仓库ETL流程的优化及解决相关技术问题,在稳定性、扩展性、成本等角度有自己的思考与实践; 4、通过深入理解业务特点,通过数据建设为业务赋能,创造业务价值;
更新于 2025-06-09