小红书【REDstar】机器学习算法工程师-商业算法
任职要求
1、本科及以上学历,计算机、软件、人工智能、电子信息、网络安全、数学等相关专业优先; 2、具备独立开展研究工作的能力, 具备算法和编程能力; 3、有搜索、推荐、广告、NLP、图像识别等相关背景优先,熟悉机器学习,NLP、数据挖掘、知识工程的经典算法,并能在业务中灵活解决实际问题,有过大规模搜索/推荐/广告系统算法研发实习经历者优先; 4、熟悉机器学习和数据挖掘领域前沿技术,在国际顶级会议(Recsys、KDD、NIPS、ICML、ACL、SIGIR)以第一作者发表过高水平论文者优先; 5、有机器学习、数据挖掘等相关项目实际经验者,或者知名数据挖掘比赛(例如KDD Cup等)中取得领先名次者优先。
工作职责
1、基于小红书海量的用户行为数据,建立并优化广告系统的算法和机制,优化面向行业广告主的算法策略,包括用户理解、行业深度优化、行业投放策略等; 2、对业界前沿技术保持敏感,结合业务特点,探索将前沿的算法技术应用于实际业务,实现技术落地。
1、跟踪大语言模型、多模态、强化学习等算法的最前沿进展,将相应技术赋能到小红书实际的业务场景中,包括社区,商业化,交易等,持续推动AGI在业务场景下的落地应用; 2、基于成熟的AI平台服务,构建完善的AI原生应用和X+AI应用,包括如智能助理、知识问答、深度研究等,打造具有核心用户价值的热点应用; 3、探索大语言模型、多模态模型、扩散模型等在搜广推场景的落地方案。
1、参与小红书大商业内容理解体系构建,包括电商、广告、直播和笔记多模态信息结构化算法建设和应用; 2、参与小红书商业知识图谱体系建设,以LLM为核心能力建设品牌、商品类目、属性、SPU、比价体系; 3、参与供应链上下游平台算法建设,基于小红书社区数据挖掘商机、供给源、流程趋势,并落地到B端系统工具; 4、基于交易&广告业务,进行模型和算法创新,与各部门(包括并不限于产品,业务中台等)的同事一起深入交流合作,打造业界领先的内容理解算法。
1、负责小红书搜广推多场景召回与排序模型优化,提升时长、互动、留存等核心指标; 2、核心技术方向包括:LLM应用于推荐系统,基于搜广推全域信号打通的图神经网络预训练模型,深度进化学习应用于全系统参数自动搜索,多模态在召回/排序等模块的应用等技术方向;在小红书独特的双列社区产品形态下,探索最适合社区产品的种草拔草全链路建模范式; 3、业务落地场景包括:双列推荐/展示/搜索/电商广告的模型,用户/资源冷启动,重排和多资源混排场景等。
1、负责小红书App社区(主站)的推荐、搜索、交易、增长、直播等业务场景的技术探索,能够从复杂的业务环境中抽象出清晰具体的技术问题,并将大模型、机器学习等技术有效应用于小红书App社区建设上,与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区产品,提升亿级用户体验,Inspire Life; 2、构建小红书App社区(主站)的内容、用户之间的生产、关系、分发、消费机制,利用Query理解、多模态内容理解、相关性/召回/排序算法、深度学习、因果推断、迁移学习、跨域表征、多任务学习、图网络、运筹学、博弈机制等技术,持续建设图文&视频内容的大规模推荐/搜索/交易/知识生产等系统,通过策略和模型优化不断提升实现SOTA效果。