小红书AI应用开发/专家-电商(AI Agent/商家智能体)
任职要求
1.本科及以上学历,计算机、软件相关专业背景,具备至少2年开发经验; 2.熟悉LLM调优(训练、Prompt优化),有Agent或Multi Agent实际项…
工作职责
1.负责电商B端场景基于AI的核心功能开发与优化,包括但不限于商家智能助手、商达撮合AI推荐、投广智能诊断、商机挖掘与牵引等,构建适配电商场景的Agent、Multi-Agent应用和工具,用好AI技术持续提升商家经营效率和体验; 2.负责各技术节点的调优,包括但不限于知识库建设、RAG、Planning、LLM训练、稳定性/SLA等; 3.负责将业界前沿AI技术应用到产品中,推动业务效果非线性&规模化提升; 4.具备数据分析思维和手段,通过科学的数据分析为产品、技术迭代提供决策依据。
阿里国际内部集大模型研究及智能化前沿产品研发于一体的AI部门;自研面向跨境商贸增强的多语言大模型-Marco和多模态大模型-Ovis,依托全球化的AI基础设施和算力资源,帮助AliExpress、Lazada、阿里巴巴国际站、Trendyol、Daraz 等平台全面革新跨境电商全链路的经营体验和商业效率;目前已服务超50万商家,平均日调用量已突破10亿次,覆盖营销、客户服务、商品发布、设计、合规等60+应用场景;正在基于自研的大模型与工程技术,打造新一代的智能体(Agent)和智能引擎(Deep Research)产品,持续致力于让全球商业没有语言障碍,用智能帮助跨境贸易更加简单。 该职位负责构建高性能、可扩展的搜索引擎工程架构,优化搜索效果,支持多模态搜索能力,打造行业领先的搜索产品; 工作职责 1、负责搜索引擎相关系统研发,打造高性能、低成本、多场景的搜索产品 2、设计并实现搜索系统分布式架构,确保系统的高可用性、高性能和可扩展性 3、构建支持多模态(文本、图像、视频)检索的搜索系统架构,推动多模态搜索能力落地 4、负责搜索服务端的开发工作,优化索引构建、查询处理等核心环节 5、与算法团队紧密协作,将搜索算法能力高效集成到工程系统中,实现搜索效果持续优化 6、构建搜索效果评估体系,设计A/B测试框架,通过数据驱动方式持续提升搜索质量 7、保障搜索系统的稳定性与性能,解决高并发、大规模数据处理等工程挑战,支撑复杂业务场景
团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。
团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。