小红书生成式推荐算法专家-行为建模方向
任职要求
【任职资格】
1、3年以上工作经验,熟悉推荐系统,在召回、排序、混排中任一模块有丰富的迭代经验;
2、动手能力极强,有ACM竞赛名次或参与过业内高难度项目;
3、具备大规模场景下的创新能力,在实际业务场景中发表过高水平论文者优先;
工作职责
业内研究表明,生成式的推荐系统存在Scaling Law现象,Scaling Law的出现相较于现有推荐系统无法通过扩充持续提升效果的现象,提出了新的可能性。该团队负责小红书生成式推荐方向,目前已经完成了原型架构的开发和线上验证,欢迎业内在推荐/广告/搜索等领域的专家一起,共同探索生成式推荐在真实业务场景的价值。 【职位描述】 1、负责生成式推荐在小红书社区推荐&展示广告场景的研发; 2、在生成式架构下,重新思考传统推荐架构中的行为建模技术(如超长序列、多兴趣等),并在召回/排序等场景中进行应用; 3、与MLLM和架构团队配合,将其他生成式模型的知识和能力迁移进实时的生成式推荐架构中;
1. 负责大众点评信息流推荐、内容搜索、内容创作场景的内容理解、多模态大模型、内容x搜推交叉相关算法研发,包括不限于内容打标、embedding、话题推荐、标题生成、描述生成、视觉问答、内容x行为联合建模等。 2. 负责将上述技术在大众点评信息流推荐、内容搜索、内容创作等场景的落地,与产运研团队紧密协作,降低内容生产成本、提升内容分发效率,解决内容生产、分发、展示等环节的实际问题。 3. 紧密跟进生成式内容理解、多模态大模型、内容x搜推交叉等领域的前沿进展,并负责在信息流推荐、内容搜索、内容创作等业务场景的落地应用。
高德信息算法专项招聘方向 业务背景 高德地图作为行业领先的出行平台,持续探索AI与大数据技术在地图、导航、出行服务等领域的创新应用,现面向算法、工程、数据领域招聘顶尖人才,推动技术驱动业务增长与用户体验升级。 核心岗位方向 算法与AI应用 1. 推荐与个性化算法:负责用户兴趣建模、个性化推荐系统设计与优化(覆盖推荐算法专家、个性化推荐/搜索算法工程师)。 2. 广告算法:优化广告预估模型、创意策略、流量分配机制及增长路径(需熟悉CTR/CVR预估、机制设计)。 3. 强化学习与智能决策:研究强化学习在路径规划、动态资源分配等场景的落地应用。 4. 多模态内容理解:探索文本、图像、时空数据融合的多模态算法,提升内容分析与场景理解能力。 搜索与数据技术 1. 搜索算法:优化搜索排序、语义理解及RAG(检索增强生成)引擎开发(需熟悉NLP、信息检索技术)。 2. 用户画像与增长:构建用户行为分析体系,驱动商家/用户增长策略(需具备数据挖掘与增长分析经验)。
我们需要NLP方向和推荐方向的算法专家,负责对地图生产资料、互联网情报、搜索日志、用户反馈等非结构化文本进行分析和信息抽取,负责理解高德用户的到达行为,融合人地大数据,构建知识图谱和智能推理能力,打通数据生产和前台业务,使得用户获得更加智能的出行和服务体验。 1、参与和负责POI产线的NLP算法部分,包括POI的NLP基础功能服务、多模态名称融合生成、名称质检模块、名称纠错模块等; 2、搭建POI的NLP基础服务平台,实现以POI为核心实体的地图数据图谱,为高德的POI搜索、推荐业务提供完备信息; 3、配合其他POI采集、挖掘、调度、聚合业务,建模NLP任务,提供准确且有效的NLP信息; 4、积极地探索和研究NLP的应用和认知领域,结合地图场景,提供更加全面且完备的服务; 5、参与和负责POI的XGC业务,包括相关性召回、各级转化率模型,提升用户的答题率,答题的转化率模型; 6、积极地挖掘高德的人地相关性,推动用户与POI问题的推荐逻辑,提升高德场景的搜推基建和技术。