logo of xiaohongshu

小红书生成式推荐算法专家-行为建模方向

社招全职3年以上大模型地点:北京 | 上海 | 杭州状态:招聘

任职要求


【任职资格】
1、3年以上工作经验,熟悉推荐系统,在召回、排序、混排中任一模块有丰富的迭代经验;
2、动手能力极强…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


业内研究表明,生成式的推荐系统存在Scaling Law现象,Scaling Law的出现相较于现有推荐系统无法通过扩充持续提升效果的现象,提出了新的可能性。该团队负责小红书生成式推荐方向,目前已经完成了原型架构的开发和线上验证,欢迎业内在推荐/广告/搜索等领域的专家一起,共同探索生成式推荐在真实业务场景的价值。
【职位描述】
1、负责生成式推荐在小红书社区推荐&展示广告场景的研发;
2、在生成式架构下,重新思考传统推荐架构中的行为建模技术(如超长序列、多兴趣等),并在召回/排序等场景中进行应用;
3、与MLLM和架构团队配合,将其他生成式模型的知识和能力迁移进实时的生成式推荐架构中;
包括英文材料
推荐系统+
相关职位

logo of amap
实习高德研究型实习生

职位描述(Job Description): 你将加入高德地图核心算法团队,在资深算法专家的指导下,探索大模型(LLM/多模态)与推荐系统的深度结合。你将有机会接触亿级用户规模的真实业务场景,参与从前沿技术研究到工程落地的全过程。 你将参与或负责以下工作内容(包括但不限于): 大模型前沿探索: 参与 Qwen-VL、InternVL 等多模态大模型及 LLM 在高德业务场景下的微调(SFT)、对齐(RLHF)及 Prompt 优化,探索生成式推荐的新范式。 推荐算法优化: 深入理解高德核心业务(如首页推荐、目的地预测),协助优化召回、排序(粗排/精排)、重排等核心模块,提升 CTR、CVR 等关键业务指标。 用户行为建模: 利用深度学习技术挖掘用户长短期兴趣,结合高德特有的时空数据,进行下一站预测和场景化意图推理。 多模态内容理解: 处理海量图像与文本数据,构建高质量的内容表征体系,解决冷启动问题,提升内容分发效率。 数据分析与实验: 深入分析业务数据,设计并跟进 AB 实验,通过数据驱动的方式验证算法效果并进行迭代。 你将获得: 核心业务场景: 接触高德亿级日活用户的真实数据,解决极具挑战性的时空推荐问题。 大牛导师带教: 资深算法专家一对一指导,提供清晰的成长路径和技术辅导。 前沿技术落地: 拥有充足的算力资源(GPU集群),亲手将大模型技术落地到实际产品中。 转正机会: 表现优异者可获得校招转正 Offer 或 绿色通道面试资格。

更新于 2025-12-10北京
logo of amap
实习高德研究型实习生

职位描述 你将加入高德地图核心算法团队,在算法专家的指导下探索大模型(LLM/多模态)与推荐系统的深度结合。你将有机会接触亿级用户规模的真实业务场景,参与从前沿技术研究到工程落地的全过程。 你将参与或负责以下工作内容(包括但不限于): 1.用户兴趣预测:基于生成式大模型解析用户行为与商品/内容语义,构建⽤户需求预测模型,提升推荐场景的转化与⽤户体验; 2.端到端⽣成式链路:探索端到端生成式范式,替代传统多阶段漏斗链路流程,基于强化学习融合业务逻辑,建设出具备⾼效scaling能力的生成式算法新链路; 3.重排范式创新:借鉴生成式大模型技术构建生成式重排创新范式,通过Reward model + 强化学习实现端到端序列整体生态价值建模; 4.深入研究和理解大模型预训练、微调与强化学习技术,结合搜推业务目标持续优化模型效果。

更新于 2026-01-06北京
logo of meituan
社招3-5年核心本地商业-点

1. 负责大众点评信息流推荐、内容搜索、内容创作场景的内容理解、多模态大模型、内容x搜推交叉相关算法研发,包括不限于内容打标、embedding、话题推荐、标题生成、描述生成、视觉问答、内容x行为联合建模等。 2. 负责将上述技术在大众点评信息流推荐、内容搜索、内容创作等场景的落地,与产运研团队紧密协作,降低内容生产成本、提升内容分发效率,解决内容生产、分发、展示等环节的实际问题。 3. 紧密跟进生成式内容理解、多模态大模型、内容x搜推交叉等领域的前沿进展,并负责在信息流推荐、内容搜索、内容创作等业务场景的落地应用。

更新于 2025-06-17北京|上海
logo of alibaba
实习淘天集团研究型实

1. Agent方向:直接参与到导购Agent的算法研发工作,包含无障碍导购Agent、搜索导购Agent两个Agent项目并结合技术创新与实际业务落地,产出高质量论文、专利与开源成果。包括相关项目的高质量数据构建,支撑复杂任务建模与行为学习,运用大模型SFT、RL等Post-training训练方法并探索 Online RL 等前沿方法,设计并落地“过程监督 + 结果监督”联合训练范式,融合MCTS、ToT、Reflection等推理方法,等等; 2. LLM应用方向:探索基于LLM的Query理解大模型,通过天猫的数据微调大模型生成ID表征向量,在搜索和推荐算法各模块进行深度的探索和应用。包括但不限于语义相关性、类目预测、召回排序等。探索生成式搜索技术(如Query扩展、结果摘要生成),助力搜索从“信息呈现”向“决策辅助”升级; 3. 结合业务需求,设计和扩展LLM的应用场景范围及规模,提高模型微调后再垂直领域的应用及专家模式的架构尝试; 4. 跟踪LLM与Agent领域的国际前沿技术动态,开展前沿算法的研究工作,推动技术创新在业务场景中的落地应用,重点突破复杂推理、GUI Agent、AI搜索等方向的技术沉淀和业务创新。

更新于 2026-01-12杭州