长鑫存储数字化建模和软件开发工程师 I Digitization Modeling and Software Development Engineer(J16279)
任职要求
1.强大的编程和脚本编写经验,精通Perl/Python/C++/Java编程语言的一种或更多 2.熟悉标准或自定义数据库结构,熟练的数据分析技能 3.有硬件描述语言(…
工作职责
1.能够分析现有工具并提供软件解决方案建议 2.了解业务需求,设计合理的实现构架 3.与团队成员合作,共同制定流程优化的方案 4.开发自动化分析工具,优化仿真工作流程
1. 基于 NVIDIA Isaac 的仿真平台开发 ‒ 搭建和维护基于 NVIDIA Isaac Sim 的机器人仿真系统,支持多种机器人类型(例如移动机器人、机械臂、无人车等)。 ‒ 利用 NVIDIA Omniverse 技术,构建高保真的虚拟环境,模拟物理特性(如动力学、传感器特性、碰撞检测等)。 ‒ 开发和优化 Isaac Sim 中的自定义扩展模块,满足项目需求。 2. 环境建模与场景构建 ‒ 使用 NVIDIA Omniverse 和其他建模工具(如 Blender、Maya)创建逼真的仿真环境和场景。 ‒ 配置和调试虚拟传感器(如激光雷达、摄像头、IMU)以模拟真实硬件行为。 ‒ 构建动态交互场景,用于测试机器人在复杂环境中的性能。 3. 机器人控制与算法验证 ‒ 在仿真环境中集成和测试机器人算法(如SLAM、路径规划、运动控制)。 ‒ 验证和优化机器人感知算法(如视觉检测、环境感知)在高保真模拟环境中的效果。 ‒ 通过仿真结果分析算法性能,为实际机器人实施提供支持。 4. 系统集成与工具链开发 ‒ 与机器人硬件和软件团队合作,将仿真结果与实际机器人验证无缝对接。 ‒ 开发自动化测试工具和数据可视化分析工具,提高开发效率和数据洞察能力。 ‒ 集成 Isaac 与其他机器人框架(如 ROS/ROS 2)以支持全栈开发。 5. 研究与创新 ‒ 研究 NVIDIA Isaac 平台的最新功能和应用场景,将新技术引入仿真系统开发。 ‒ 跟踪机器人仿真领域的前沿技术(如物理引擎优化、AI 模型仿真、数字孪生技术),并应用于项目中。
在这里,你将获得挑战性的基础研究和前沿的虚拟设计;你将接触行业最顶尖的技术应用,通过数字化驱动产品设计;你将拥有宽松的工作关系和前景广阔的发展方向! 具体工作方向包括: 1.掌握有限元等仿真方法,运用数值方法优化产品设计; 2.研究业界前沿的仿真技术,对工程问题进行数据挖掘并建立数字化模型; 3.负责仿真精度和效率提升,从仿真算法、力学本构、材料实验、软件程序开发等多方向实现技术突破; 4.新型仿真能力拓展,如多物理场仿真、可靠性仿真等。
1.系统架构设计与规划: 负责公司HRIS系统的整体技术架构设计、选型和演进路线规划,确保系统满足未来业务发展需求。 主导 CoreHR、绩效管理、薪酬福利等核心模块的需求分析,将复杂的业务需求转化为稳健、可落地的技术架构方案。 2.核心模块研发与优化: 负责核心业务流程(如员工全生命周期管理、薪酬核算引擎、绩效评估体系)的抽象、建模和代码实现,解决系统中的关键技术难题。 识别并解决系统性能瓶颈,持续优化系统可靠性、可扩展性和安全性。 3.技术标准与团队协作: 制定并推行 HR 系统开发的技术规范、设计原则和最佳实践。 指导并培训团队成员,确保架构设计思想在开发团队中有效落地,提升团队整体技术水平。 与产品经理、HR业务伙伴及外部供应商紧密合作,确保技术方案与业务目标高度一致。 4.技术栈选型与创新: 评估并引入先进的技术(如微服务、云计算、数据分析等),推动HR系统的数字化转型和自动化水平提升。
团队介绍:AI Coding团队致力于探索LLM在软件开发全生命周期的应用,支持MarsCode、Trae等代码智能产品中代码补全、智能编辑、程序debug以及代码修复等核心AI功能的全链路模型优化。欢迎对大模型、Agent技术和开发者工具体系感兴趣、对技术有追求的同学加入,共同成长! 课题介绍: 一、课题背景与研究动机 1、复杂软件工程项目的挑战与需求:随着企业业务需求的快速增长,软件项目规模持续扩大,系统架构日趋复杂,跨语言、多框架、多平台开发成为常态。开发团队在应对代码理解、跨模块协作、版本演化和长期维护等问题时,效率与质量面临双重挑战; 2、大模型在编程领域的潜力与不足:大规模语言模型在代码生成、补全和文档生成等任务上已展现强大能力,推动了智能化开发工具的初步落地。然而,在应对复杂软件工程项目时,现有模型在长序列建模、上下文一致性、跨文件依赖理解及代码质量保障方面仍有明显不足; 3、技术与产业机遇:1)范式变革:大模型有望成为软件开发全流程的重要参与者,推动从工具辅助向智能协作转变,覆盖从需求分析到代码实现、测试生成和自动化重构的各个环节;2)行业转型:通过深度优化大模型在复杂软件开发中的能力,可显著提升企业研发效率、软件质量与团队协作能力,助力数字化转型; 二、研究目标与创新价值 1、研究目标 1)提升大模型对复杂项目的语义理解与跨模块上下文建模能力,尤其是在长序列代码、跨文件依赖和复杂逻辑推理场景中的表现; 2)优化模型微调与自适应学习策略,通过引入多任务学习、强化学习(RL)和领域知识增强,构建具有高泛化能力和行业适配能力的大模型; 3)集成领域知识库与检索增强(RAG)技术,确保模型生成结果在行业标准、安全规范和合规性方面的准确性与可靠性; 4)构建自我进化的 AI Coding多智能体系统,基于强化学习、长期记忆、垂类模型训练、测试时计算等方法,持续优化任务规划、代码生成等能力,实现数据驱动的自我进化,从而实现复杂应用的端到端全栈开发; 2、创新价值 1)模型结构与预训练策略的突破:在通用预训练模型基础上,结合程序分析与语法语义建模,提升对大型软件项目的理解能力,尤其是在模块间交互和函数调用路径分析方面; 2)模型优化与自适应增强:通过多维度监督信号(代码质量、运行性能、测试覆盖率等),实现强化学习与在线反馈的动态调整,打造具备持续学习能力的大模型; 3)从工具辅助到全生命周期协作:以大模型为核心,推动需求到实现、测试到部署的智能化协作新范式,助力开发者在复杂工程项目中更高效地完成跨团队协作与长期维护; 4)领域知识与行业专属能力融入:通过引入行业领域知识库(如金融合规、医疗数据安全规范等),结合检索增强技术(RAG),确保生成代码符合行业标准,显著降低错误和安全隐患; 三、主要挑战与应用前景 1、长序列代码与复杂上下文建模:复杂软件项目中,代码文件可能达到数千行,存在跨模块调用和多层次依赖,模型如何在长序列输入下保持上下文一致性,是核心技术难点之一; 2、跨语言与多框架适配:现有模型大多针对单一语言优化,而企业项目往往涉及多语言(如 Python、C++、Java 等)和多框架(如 React、Django、Kubernetes)。如何提升模型的跨语言泛化能力成为重要课题; 3、领域知识缺失与安全合规风险:通用大模型缺乏行业特定知识,可能生成不符合行业规范或存在潜在漏洞的代码,需引入领域知识与合规规则进行优化和增强; 4、人机协作:针对新涌现的大模型技术和应用场景,研究下一代软件研发人机交互形式,推动AI驱动的交互形式的普及与发展。