传音算法工程师-NLP(J18503)
校招全职地点:深圳状态:招聘
任职要求
1、包含但不限于计算机、信息工程、模式识别、人工智能、自动化、软件工程、电子工程、统计学、应用数学、物理学/量子计算、信息安全、信号与信息处理等专业的博士和优秀硕士; 2、熟练掌握NLP基础理论和算法,在一个或多个领域(如文本分类、语义理解、篇章理解、自然语言生成等)能够独立开展研发工作; 3、熟悉至少一种编程语言,包括但不限于C/C++、python、go等; 4、熟练使用一种或几种深度学习框架(如tensorflow、caffe、mxnet、pytorch等)。
工作职责
1、负责自然语言处理的算法研发,包括但不限于语义分析、语种识别、机器翻译、文本纠错等; 2、负责机器翻译系统,侧重小语种、主流语种翻译系统的技术研究,包括自然语言理解、自然语言生成、encoder-decoder模型等; 4、负责机器翻译前沿问题的研究,结合未来实际应用场景,提供技术解决方案。
包括英文材料
模式识别+
https://www.mathworks.com/discovery/pattern-recognition.html
Pattern recognition is the process of classifying input data into objects, classes, or categories using computer algorithms based on key features or regularities.
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Go+
https://www.youtube.com/watch?v=8uiZC0l4Ajw
学习Golang的完整教程!从开始到结束不到一个小时,包括如何在Go中构建API的完整演示。没有多余的内容,只有你需要知道的知识。
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
MXNet+
https://www.tutorialspoint.com/apache_mxnet/index.htm
Apache MXNet is a powerful deep learning framework that supports both symbolic and imperative programming.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
相关职位
校招
1、参与翻译相关语料(如多语言数据、AI训练数据)的收集、清洗、标注及分析流程设计,确保数据质量和规模达标。 2、协助优化数据生产方案,探索更高效的语料生成方法。 3、协助维护分布式数据采集系统,优化数据爬取、解析、存储等流程,提升数据获取效率。 4、调研行业最新内容生产技术,探索更具成本效益的内容生产方案。
更新于 2025-08-18
社招3年以上技术类
1.负责NLP技术在商品同款/相似款、商品SPU抽取相关算法中的应用和拓展; 2.负责分析、挖掘电商场景中的多种文本数据,包括不限于商品的标题/描述/属性、仓配UGC内容等,构建供应链知识体系; 3.负责内部NLP基础能力的建设和维护,包括但不限于分词、实体识别、知识抽取、语义理解等。
更新于 2025-07-23

社招
工作职责 负责NLP相关算法在业务场景下的应用,包括算法验证与项目落地 1.基于人人对话进行场景识别及行为分类,具体技术涉及文本分类、实体和关系抽取等 2.客服及外呼场景下的多轮对话系统构建,具体技术涉及意图识别、槽位填充、对话管理等 3.语音算法,具体技术涉及ASR、语音情感分析、文本纠错等
更新于 2022-05-30