
货拉拉算法工程师-NLP(J18477)
社招全职地点:广东状态:招聘
任职要求
任职资格 1.计算机/统计/数学相关专业毕业,研究生及以上学历 2.扎实的数据结构与算法基础,python编程基础扎实 3.熟悉常见的机器学习/深度学习算法,熟练使用Tensorflow/Pytorch等深度学习框架 4.熟练掌握主流的nlp技术工具及模型算法,包括但不限于CRF, CNN, LSTM, Word Embedding, Seq2Seq, transformer, Bert 5.在高水平会议上发表过论文者优先
工作职责
工作职责 负责NLP相关算法在业务场景下的应用,包括算法验证与项目落地 1.基于人人对话进行场景识别及行为分类,具体技术涉及文本分类、实体和关系抽取等 2.客服及外呼场景下的多轮对话系统构建,具体技术涉及意图识别、槽位填充、对话管理等 3.语音算法,具体技术涉及ASR、语音情感分析、文本纠错等
包括英文材料
学历+
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
CNN+
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
Convolutional Neural Network (CNN) forms the basis of computer vision and image processing.
[英文] CNN Explainer
https://poloclub.github.io/cnn-explainer/
Learn Convolutional Neural Network (CNN) in your browser!
https://www.deeplearningbook.org/contents/convnets.html
Convolutional networks(LeCun, 1989), also known as convolutional neuralnetworks, or CNNs, are a specialized kind of neural network for processing data.
https://www.youtube.com/watch?v=2xqkSUhmmXU
MIT Introduction to Deep Learning 6.S191: Lecture 3 Convolutional Neural Networks for Computer Vision
LSTM+
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Humans don’t start their thinking from scratch every second.
https://d2l.ai/chapter_recurrent-modern/lstm.html
The term “long short-term memory” comes from the following intuition.
https://developer.nvidia.com/discover/lstm
A Long short-term memory (LSTM) is a type of Recurrent Neural Network specially designed to prevent the neural network output for a given input from either decaying or exploding as it cycles through the feedback loops.
https://www.youtube.com/watch?v=YCzL96nL7j0
Basic recurrent neural networks are great, because they can handle different amounts of sequential data, but even relatively small sequences of data can make them difficult to train.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
BERT+
https://www.youtube.com/watch?v=xI0HHN5XKDo
Understand the BERT Transformer in and out.
相关职位
社招3年以上技术类
1.负责NLP技术在商品同款/相似款、商品SPU抽取相关算法中的应用和拓展; 2.负责分析、挖掘电商场景中的多种文本数据,包括不限于商品的标题/描述/属性、仓配UGC内容等,构建供应链知识体系; 3.负责内部NLP基础能力的建设和维护,包括但不限于分词、实体识别、知识抽取、语义理解等。
更新于 2025-07-23
校招
1、负责自然语言处理的算法研发,包括但不限于语义分析、语种识别、机器翻译、文本纠错等; 2、负责机器翻译系统,侧重小语种、主流语种翻译系统的技术研究,包括自然语言理解、自然语言生成、encoder-decoder模型等; 4、负责机器翻译前沿问题的研究,结合未来实际应用场景,提供技术解决方案。
更新于 2025-08-18
社招技术类
1. 迭代召回模型,提升个性化能力 2. 迭代相关性模型/Query意图模型,深入理解用户意图,平衡相关性和效率 3. 优化视频内容的多模态模型,深入理解视频内容信息,服务全链路算法模块 4. 优化点击率、各类转化率、时长模型效果,提升模型的个性化能力,优化准度 5. 优化全链路排序策略,更好的平衡多目标,提升搜索结果页质量以及长期目标,如搜索渗透和留存
更新于 2025-03-31