
文远知行运动规划算法工程师(Motion Planning)-广州/深圳/武汉
任职要求
1、机器人,机电控制和自动化,计算机科学专业;本科/硕士/博士学历;
2、有如下领域的项目经验:
A-optimization based or search based path planning and trajectory generatio…工作职责
1、负责自动驾驶系统中的路径规划算法开发,包含但不限于全局路径规划、泊车运动轨迹规划等; 2、有实际的自动驾驶项目经验,有路径规划算法设计经验,能满足复杂场景下的系统需求; 3、分析自动驾驶仿真和路测数据,提升对自动驾驶系统的理解,发现和解决车辆运动规划问题。
-设计基于深度学习的驾驶行为决策模型(如场景理解、交互意图博弈、自车轨迹规划),解决路口通行、变道博弈、礼让行人等复杂交互问题; -研究多智能体强化学习(MARL)、社会合规行为建模(Socially-Compatible Planning)等技术,提升自动驾驶系统的拟人化水平; -运动规划与轨迹生成; -开发端到端或分层的轨迹规划算法,结合深度学习与经典优化方法,生成平滑、安全、动态可适应的行驶轨迹; -探索不确定性环境下的实时规划策略(如应对突发障碍、极端天气); -交互与泛化能力提升;
决策算法开发: -设计基于深度学习的驾驶行为决策模型(如场景理解、交互意图博弈、自车轨迹规划),解决路口通行、变道博弈、礼让行人等复杂交互问题; -研究多智能体强化学习(MARL)、社会合规行为建模(Socially-Compatible Planning)等技术,提升自动驾驶系统的拟人化水平; -运动规划与轨迹生成; -开发端到端或分层的轨迹规划算法,结合深度学习与经典优化方法,生成平滑、安全、动态可适应的行驶轨迹; -探索不确定性环境下的实时规划策略(如应对突发障碍、极端天气); -交互与泛化能力提升; -构建驾驶员行为预测模型,研究长尾场景(Corner Cases)的决策泛化能力,利用对抗训练、元学习等方法增强系统鲁棒性。
决策算法开发: -设计基于深度学习的驾驶行为决策模型(如场景理解、交互意图博弈、自车轨迹规划),解决路口通行、变道博弈、礼让行人等复杂交互问题; -研究多智能体强化学习(MARL)、社会合规行为建模(Socially-Compatible Planning)等技术,提升自动驾驶系统的拟人化水平; -运动规划与轨迹生成; -开发端到端或分层的轨迹规划算法,结合深度学习与经典优化方法,生成平滑、安全、动态可适应的行驶轨迹; -探索不确定性环境下的实时规划策略(如应对突发障碍、极端天气); -交互与泛化能力提升; -构建驾驶员行为预测模型,研究长尾场景(Corner Cases)的决策泛化能力,利用对抗训练、元学习等方法增强系统鲁棒性。