百度决策规划算法工程师(J86687)
社招全职IDG地点:北京 | 上海状态:招聘
任职要求
-计算机科学、机器人学、控制工程、应用数学等相关专业硕士/博士在读,或具备同等研究经验; -熟练掌握深度强化学习(DRL)、模仿学习(Imitation Learning)、序列决策(POMDP)等方法的理论与实践; -熟悉PyTorch/TensorFlow框架,具备Python/C++编程能力及Linux开发经验; -了解经典决策规划算法(如A*、RRT*、MPC)或控制理论(如车辆动力学模型); -熟悉自动驾驶决策规划任务(行为决策、轨迹生成、交互建模)及数据集(nuPlan、Waymo Motion Dataset); -具备多智能体系统、博弈论、不确定性推理(Bayesian Networks)经验者优先。 加分项: -在CoRL、ICRA、IV等机器人/自动驾驶顶会发表决策规划相关论文,或参与Apollo、Autoware等开源项目; -熟悉决策规划开源框架,有机器人路径规划(如无人机、机械臂)开发经验; 软技能: -对复杂系统建模有强烈兴趣,具备严谨的逻辑思维与跨学科协作能力。
工作职责
-设计基于深度学习的驾驶行为决策模型(如场景理解、交互意图博弈、自车轨迹规划),解决路口通行、变道博弈、礼让行人等复杂交互问题; -研究多智能体强化学习(MARL)、社会合规行为建模(Socially-Compatible Planning)等技术,提升自动驾驶系统的拟人化水平; -运动规划与轨迹生成; -开发端到端或分层的轨迹规划算法,结合深度学习与经典优化方法,生成平滑、安全、动态可适应的行驶轨迹; -探索不确定性环境下的实时规划策略(如应对突发障碍、极端天气); -交互与泛化能力提升;
包括英文材料
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
相关职位
实习菜鸟集团2026
1、负责自动驾驶决策规划系统的研发,包括但不限于基于专家系统、机器学习和数据驱动的决策规划算法研发; 2、设计复杂交互场景的处理策略,确保自动驾驶车辆的行为安全性和舒适性,提升智能性; 3、负责端到端模型设计、数据生产、Autolabel等工作; 4、完成相关算法研发和效果验证,与上下游团队协作,实现系统集成与调试工作; 5、追踪自动驾驶行业和深度学习技术的最新进展,引入新技术新方法解决自动驾驶的长尾问题。
更新于 2025-05-22

社招
1.负责开发自动驾驶系统中的决策规划模块,包含语义地图构建、行为预测、行为决策和轨迹规划等关键技术。 2.参与自动驾驶功能的开发和持续迭代,包括但不限于行车功能、泊车功能和主动安全特性。 3.遵循最佳系统工程和软件工程实践,配合开发流程和团队协作,确保研发效率和产品质量。
更新于 2024-11-06

社招研发
稳定可靠且易于扩展的Planning架构设计与系统开发; 通过DL/RL/POMDP/Game Theory等算法提升决策规划交互能力,使系统表现更加符合人类驾驶习惯; 基于海量路测数据构建完整的数据驱动算法工具链,构建高效规划训练及评测系统等; 高性能高效率的数值优化和计算几何算法开发。
更新于 2022-10-11