哔哩哔哩大模型研究型实习生
任职要求
1.在读硕士或博士研究生,计算机科学、人工智能、机器学习等相关专业。 2.扎实的机器学习理论基础,熟悉主流大模型算法和框架。 3.良好的编程能力,熟练掌握 Python、C++ 等编程语言。 4.具备较强的学习能力和问题解决能力,能够快速理解和应用新技术。 有以下经验者优先: 1.在大规模预训练模型上有实际项目经验。 2. 有开源项目贡献经验。 3. 有论文发表经验。
工作职责
我们正在寻找一位对大模型技术充满热情、具备扎实理论基础和良好编程能力的研究型实习生,加入我们充满活力的团队,共同探索人工智能技术的未来。你将: 1.深入研究大模型相关前沿技术: 包括但不限于大语言模型的预训练、Post-training、MOE(Mixture of Experts)、多模态大模型等,阅读最新论文,复现经典算法,探索大模型在B站各场景的应用潜力。 2.独立或协助完成大模型相关的技术探索: 参与数据收集和预处理、模型训练和评估、结果分析和报告撰写等工作,为团队的研究成果和技术影响力贡献力量。 我们提供: 1.充足的机器资源和数据支持: 为你提供高性能计算资源和海量数据,助力你在大模型领域的研究探索。 2.丰厚的实习补贴和良好的工作环境: 为你提供舒适的工作环境和具有竞争力的实习补贴。
POI部门介绍: POI智能化致力于智能化的手段,真实还原现实世界兴趣点(Point of Interest),为高德出行和生活服务提供支撑,是高德用户信息获取、交易履约和出行体验的基础; 每个POI背后都有精彩的故事,我们作为链接POI和用户的第一步,每一分努力都是与现实世界的一次互动。欢迎加入我们,从另一个视角来观察世界! 职位描述: 1. 研究、训练、使用预训练模型,解决地图领域POI数据相关业务,包括但不限于文本理解,文本生成以及语义匹配等相关任务。 2. 从事预训练模型研究、训练、应用,包括但不限于多语言、多模态、训练任务优化、下游任务迁移、知识融入更新、模型性能提升等; 3. 负责多模态、跨语言预训练等相关底层技术的研究与实现,并应用于下游的文本/图像的理解与生成; 4. 将预训练模型与搜索/地图领域实际问题相结合,包括但不限于训练任务优化、任务迁移、知识融入更新、模型性能提升等;
一、团队介绍 高德视觉技术中心为高德业务提供全面的核心视觉技术,是高德时空互联网领域重要的技术驱动力。我们专注于图像识别、点云识别、三维重建和传感器融合定位等领域, 我们致力于研究和开发业内领先的感知、SLAM、重建和多模态大模型等算法, 促科技创新,与生态共进,连接真实世界,做好一张活地图,让出行和生活更美好! 通过视觉技术中心的春季实习生项目,高校学生通过此项目可以接触到高德真实的业务场景和海量时空大数据,在优秀的前辈与高德技术人交流学习中加速成长。我们希望更多优秀的高校同学加入我们,一起打造极致的算法和产品体验。 二、基本要求 面向预期于26、27届毕业的同学,可以连续实习至少三个月的同学优先。实习地点:北京,我们将提供有竞争力的实习薪酬和充足的训练资源。 三、算法实习生 职位描述 团队主要聚焦视觉、矢量地图、多模态大模型技术,我们期待你的工作将覆盖以下至少一个技术方向: 1. 探索自动驾驶场景下的在线感知、建图、关联等前沿技术,包括但不限于矢量地图构建、矢量地图关联等; 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等;
专注于LLM post-training和agent相关算法研究,具体职责包括: 1、探索LLM可解释性 + 模型增量CPT/SFT/RL算法,提升语言模型在专业领域上的能力; 2、探索LLM可解释性 + 低比特量化算法,降低模型training/inference阶段计算成本; 3、探索agent 增强微调算法,提升模型在专业领域上端到端解决复杂任务的能力; 4、将相关算法研究成果发表在国际顶级会议上(ICLR/NeurIPS/ICML/ACL); 5、将相关算法研究成果应用于模型低比特量化、海外大模型业务中,显著提升阿里云通义千问模型服务效率和沙特、日本等国家主权大模型线上效果。