高德地图多模态大模型研究型实习生
任职要求
1. 自然语言处理、计算机视觉、人工智能等相关专业的硕士生/博士生,对发文章有兴趣,具备良好的英文写作能力; 2. 发表过CV&AI顶会论文优先,ACM编程竞赛、数据建模竞赛等竞赛获奖优先。 3. 动手实现能力强,代码基本功扎实,精通基于Python的算法开发;熟练掌握pytorch/tensorflow/mxnet等至少一项深度学习框架。 4. 自驱力强、充满好奇心、团队合作、沟通能力佳。
工作职责
一、团队介绍 高德视觉技术中心为高德业务提供全面的核心视觉技术,是高德时空互联网领域重要的技术驱动力。我们专注于图像识别、点云识别、三维重建和传感器融合定位等领域, 我们致力于研究和开发业内领先的感知、SLAM、重建和多模态大模型等算法, 促科技创新,与生态共进,连接真实世界,做好一张活地图,让出行和生活更美好! 通过视觉技术中心的春季实习生项目,高校学生通过此项目可以接触到高德真实的业务场景和海量时空大数据,在优秀的前辈与高德技术人交流学习中加速成长。我们希望更多优秀的高校同学加入我们,一起打造极致的算法和产品体验。 二、基本要求 面向预期于26、27届毕业的同学,可以连续实习至少三个月的同学优先。实习地点:北京,我们将提供有竞争力的实习薪酬和充足的训练资源。 三、算法实习生 职位描述 团队主要聚焦视觉、矢量地图、多模态大模型技术,我们期待你的工作将覆盖以下至少一个技术方向: 1. 探索自动驾驶场景下的在线感知、建图、关联等前沿技术,包括但不限于矢量地图构建、矢量地图关联等; 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等;
1. 跟进多模态大模型(vLLM)预训练、SFT、RLHF等技术,调研与跟进最新进展;负责多模态相关性大模型、多模态大模型稀疏检索和稠密模型,多模态大模型个性化预训练方向,以及多模态大语言模型的训练和推理加速; 2. 多模态大模型个性化预训练:研发个性化预训练模型,探索在训练样本、模型参数量等维度上scale-up能带来的收益,研究在电商搜索场景下, CTR和CVR 模型中用户动线特征的挖掘和应用,包括用户行为模型的获取、特征设计、结构优化等个性化建模; 3. 多模态大模型的训练和推理加速:协助研究和开发多模态大语言模型的加速技术,包括但不限于量化、剪枝和蒸馏,以及数据特征和调度优化;实现和优化多模态大模型推理框架,以提高推理速度和效率;与工程团队合作,解决机器学习模型在部署过程中的性能问题; 4. 多模态大模型相关性模型:研发基于多模态大模型的相关性标注和评测大模型,应用到体验实验评测、体验监控、离线数据标注、线上相关性判断等方向; 5.多模态大模型稀疏检索和稠密模型:研究方向包括不限于:电商词表生成、多模态稀疏词表和稠密表征技术、LLMs幻觉缓解等问题。
研究领域: 人工智能 项目简介: 课题1:音视频细粒度理解与token压缩,负责人:默宸,HC数:1个 随着大模型时代的到来,图文领域的视觉Token压缩技术为复杂场景下的视觉理解提供了全新的解决思路。这种技术不仅能够有效减少冗余信息,还能保留关键语义特征,从而显著提升图像的细粒度理解能力,同时满足高时效性任务的需求。基于此,我们希望能够开展基于query牵引与信息密度的Token压缩算法研究,针对视频内容的特点,设计高效的压缩与理解方案,以推动视频审核算法的性能优化与实际落地。 课题2:基于规则动态化Token交互的高效视频理解与推理模型研究,负责人:夜兰,HC数:1个 本研究方向旨在探索一种基于多规则联合推理的高效视频理解模型,以解决视频理解任务中效率与精度的平衡问题。通过规则先验引导的视觉Token联合抽取,结合视觉Token压缩技术,显著减少冗余信息并优化计算效率。模型引入动态规则-Token对应机制,实现规则与视觉信息的高效联合提取,同时结合多任务学习框架,支持多种规则的统一推断与协同处理。该方案能够在保持高精度的同时显著提升推理速度,适用于视频内容多规则审核、视频账号行为识别和场景分类等高时效性任务,为实际应用场景提供高效、细粒度的视频理解解决方案。 课题3:视频开集信息检测和定位,负责人:默宸,HC数:1个 随着视频内容生态的爆发式增长,传统闭集检测方法在面对业务快速迭代需求时面临显著挑战,难以泛化至开放场景下的新概念检测,且时空定位精度与效率难以平衡。本研究致力于构建视频开集信息检测框架,通过多模态语义对齐与时空注意力机制,实现对任意指定内容的视频检索(包含时空定位)。该技术将推动视频审核从定制化开发向通用化检测转型。 课题4:隐式深度推理与动态步骤压缩的协同优化架构研究,负责人:侯猫/亘郁,HC数:2个 现有大语言模型在复杂推理任务中面临根本性效率瓶颈:基于Transformer的注意力机制导致计算复杂度随上下文长度呈二次增长,KV缓存存储开销线性增加。传统显式推理方法(如Chain-of-Thought)通过生成冗长中间步骤提升精度,却加剧了计算资源消耗;而隐式推理虽能压缩计算步骤,但存在推理路径不可控、状态迭代深度不足等缺陷。因此希望从融合动态步骤压缩与隐式深度推理的角度出发,不仅实现动态剪枝冗余中间思考步骤,同时通过隐状态迭代实现深度计算扩展,从而达到在保持/提升推理精度的同时,将复杂任务的计算负载降低5,突破现有模型在长文本生成与多跳推理中的效率天花板。
1. 跟进和研发扩散模型、视频生成基座模型等先进生成算法和模型; 2. 跟进和研发视频生成应用大模型、多条件可控生成等先进的生成算法、模型和策略; 3. 研发基于视频生成大模型的视频AIGC工具应用; 4. 结合以上方向的探索和研究,撰写发表论文,和业界、学术界保持良好的交流。
我们正在寻找一位对大模型技术充满热情、具备扎实理论基础和良好编程能力的研究型实习生,加入我们充满活力的团队,共同探索人工智能技术的未来。你将: 1.深入研究大模型相关前沿技术: 包括但不限于大语言模型的预训练、Post-training、MOE(Mixture of Experts)、多模态大模型等,阅读最新论文,复现经典算法,探索大模型在B站各场景的应用潜力。 2.独立或协助完成大模型相关的技术探索: 参与数据收集和预处理、模型训练和评估、结果分析和报告撰写等工作,为团队的研究成果和技术影响力贡献力量。 我们提供: 1.充足的机器资源和数据支持: 为你提供高性能计算资源和海量数据,助力你在大模型领域的研究探索。 2.丰厚的实习补贴和良好的工作环境: 为你提供舒适的工作环境和具有竞争力的实习补贴。