网易强化学习算法工程师
社招全职1年以上网易伏羲地点:杭州状态:招聘
任职要求
1、计算机、数学、人工智能、自动化、控制等相关专业硕士及以上学历; 2、1年以上相关工作经验,包括但不限于使用强化学习、模仿学习、LLM等相关技术,参与游戏AI、无人驾驶等决策控制类业务;有FPS游戏相关项目经验者优先; 3、对编程语言的熟练程度要求: Python > C# == Lua > C++;能够熟练使用Tensorflow或Pytorch中的任意一种深度学习框架;熟悉或使用过Ray等分布式训练框架,进行大规模分布式训练; 4、热爱游戏、重度游戏爱好者优先。
工作职责
1、对接游戏项目需求,负责技术方案的设计和实现,不断迭代和优化项目效果; 2、持续改进算法和框架,开发和完善通用框架和SDK工具,提升游戏AI开发效率。
包括英文材料
学历+
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C#+
https://learn.microsoft.com/en-us/dotnet/csharp/
The C# guide contains articles, tutorials, and code samples to help you get started with C# and the .NET platform.
Lua+
https://www.lua.org/pil/contents.html
This is the online version of the first edition of the book Programming in Lua, a detailed and authoritative introduction to all aspects of Lua programming written by Lua's chief architect.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
Ray+
https://github.com/ray-project/ray
Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.
https://www.youtube.com/watch?v=FhXfEXUUQp0
In this video, I'll teach you everything you need to know about Apache Ray!
https://www.youtube.com/watch?v=fMiAyj2kgac
Using powerful machine learning algorithms is easy using Ray.io and Python.
https://www.youtube.com/watch?v=q_aTbb7XeL4
Parallel and Distributed computing sounds scary until you try this fantastic Python library.
相关职位
社招核心本地商业-业
1. 负责强化学习算法的研究、开发和应用,解决AI搜索等实际问题并提升业务效果。 2. 设计、实现、优化强化学习模型,包括但不限于价值迭代、策略梯度、模型预测控制等算法。 3. 跟踪强化学习领域的前沿研究进展,不断探索和创新,推动强化技术发展。 4. 与LLM的模型后训练相结合,迭代RL训练技术并实现业务模型的调优和落地。
更新于 2025-04-22
社招A30179A
1、负责强化学习算法的开发和应用,用于机器人的精细操作或者全身运动控制,提升动作的自然度和鲁棒性; 2、完成控制策略在真机上的测试验证,重点解决部署过程中遇到的sim2real gap问题; 3、持续跟踪国内外前沿研究成果,并进行相关算法复现。
更新于 2025-05-06
社招
1. 开展机器学习和强化学习领域的科学研究,推动技术进步; 2. 开发更优的数据驱动人类行为建模方法; 3. 与研究人员及跨职能团队合作,沟通研究计划、进展与成果; 4. 应用前沿强化学习技术,推动生成式人工智能(GenAI)和具身智能应用落地。 5. 参与学术论文发表及开源项目贡献。
更新于 2025-04-28
社招A76234
1、深入研究和应用COT及强化学习技术,建立针对电商大模型推理优化体系,使模型在处理电商复杂问题的准确率显著提升,显著增强模型的动态推理和反思能力,确保模型能够快速、准确地应对电商业务的高复杂度和多变性需求; 2、研发的电商推理优化大模型支持核心电商业务场景(如审核、商品推荐),降低人工审核成本,提升电商业务的智能化水平和运营效率; 3、研究大模型驱动的智能体算法,包括但是不局限于ReACT、Voyager、WebGPT、AutoGPT; 4、撰写技术报告和论文,分享研究成果,参与内外部的技术交流和合作,推动团队技术水平的提升,提高团队在行业内的影响力。
更新于 2025-03-20