希音高级/资深/算法专家-AI机器学习平台
任职要求
1、计算机及相关专业,具有扎实的算法和数据结构,优秀的问题理解能力和编码能力。 2、扎实的机器学习理论基础,具有行业常用的机器学习算法实践经验。 3、熟悉业界主流的机器学习平台,有大规模机器学习平台的研发经验者…
工作职责
1、结合电商的业务特性,进行模型和算法创新,打造业行领先的机器学习/深度学习算法平台能力。 2、超大规模的机器学习模型优化,包括但不限于深度学习、强化学习、表征学习等,最大效率地提升电商流量效率。
高级/资深后台开发/技术专家(AI算法工程化)-上海南京 1. 算法工程化支持:负责支持跨境治理和商品治理方向的算法工程化落地,包括算法服务化、模型部署、性能优化、A/B测试与监控体系搭建。 2. 系统开发与维护:基于Java与Python开发高性能、可扩展的算法平台和治理系统,保障算法稳定运行和高可用性。 3. 算法研发协同:与算法研究人员、产品经理紧密协作,推动图像理解、NLP、多模态及大模型等算法从研发到线上应用的全流程闭环。 4. 数据与质量评估:建设和维护治理效果数据采集、评估和监控体系,持续迭代优化模型与策略,驱动业务降本增效。 5. 技术方案创新:关注业界最新算法工程化与MLOps实践,推动内部平台能力升级,提升算法迭代效率。
我们致力于打造银行信贷领域的新一代“智能决策大脑”。我们以行业与产业研究为锚点,以数据智能为引擎,深度融合资深信贷专家的经验与海量异构数据洞察,构建面向信贷全生命周期的领域专属决策大模型。 1.主导信贷大模型的后训练体系:通过有监督微调(SFT)、奖励模型(RM)训练、人类反馈强化学习(RLHF)、直接偏好优化(DPO)等领域领先技术,让模型不仅“会回答”,更能“可解释、答得准、判得稳、符合专家直觉”,实现与信贷业务目标的深度对齐。 2.构建垂直领域智能Agent系统的能力:能主导信贷场景下Intelligent Agent的核心框架设计,融合感知、规划、执行与持续学习机制,并通过知识图谱、RAG、NL2SQL等技术打通非结构化知识、结构化数据与自然语言交互,实现从行业洞察、风险画像到决策支持的端到端自动化。 3.打造高质量领域数据飞轮:从零构建面向信贷场景的指令与偏好数据集,设计数据配比、清洗、增强与合成策略,持续提升数据效率与泛化能力——因为你知道,好模型的背后,是更聪明的数据。 4.建立科学严谨的评估体系:构建覆盖准确性、逻辑一致性、风险敏感度、幻觉控制等多维度的自动化评测 pipeline,用数据驱动模型迭代,确保每一个版本都比上一个更可靠、更可用。 5.站在AI+金融的最前沿:紧密跟踪全球大模型的最新进展(如新型偏好学习、多Agent协作等),快速将学术突破转化为业务生产力,解决真实世界中复杂、高 stakes 的信贷决策挑战。同时将领域化的研究转化为高质量的顶会论文,形成持续学术影响力。
钉钉正在全面拥抱多模态AI,正在致力于将视觉大模型、边缘智能与实时视频分析深度融合,赋能智能零售、智慧工厂、智能交通等多个行业。我们拥有强大的工程化能力和创新研发氛围,期待志同道合的技术精英加入,共同推动视觉AI落地千行百业。 我们正在寻找在视觉AI领域具备真正工程化落地经验的技术人才,你将参与公司核心视觉AI系统的研发与优化,负责从算法设计、模型训练到高性能部署、大规模流式处理的全链路技术实现。具体职责包括: 1. 视觉大模型与算法开发 ○ 负责视觉大模型的后训练(Post-training)优化,包括微调、蒸馏、量化、剪枝等,提升模型在实际场景中的泛化能力与效率。 ○ 开发端侧视觉大模型,针对边缘设备进行轻量化设计与部署。 ○ 设计并实现传统CV算法(如目标检测、跟踪、姿态估计、图像增强等)与深度学习模型的融合方案。 ○ 构建视觉嵌入生成与特征提取模型,支持跨模态检索、相似性匹配等应用。 ○ 能根据实时性、性能、成本等多维约束,设计合理的算法组合与技术路线,实现最优落地效果。 ○ 在行业专家的指导下完成高质量的数据清洗和标注,建立多行业多场景的视觉AI评估框架 2. 高性能推理部署与优化 ○ 基于不同算法特性,选择并实施高并发、大吞吐的推理部署方案,熟练使用以下技术栈: ■ 推理框架:Triton Inference Server、ONNX Runtime、TensorRT ■ 部署平台:KServe + Triton / KServe + vLLM ○ 实现模型的动态批处理、自适应推理、低延迟响应,优化端到端服务性能。 ○ 负责模型格式转换、算子优化、硬件适配(GPU/TPU/NPU)及性能调优。 3. 分布式视频流处理系统构建是加分项 ○ 构建高可用、可扩展的分布式视频流处理 pipeline,支持多路视频流的实时接入与处理。 ○ 基于 Kafka + Flink 实现视频帧的流式消费、分发与状态管理。 ○ 完成视频数据的实时AI推理、结果聚合、元数据落盘,并与下游系统无缝集成。 ○ 保障系统在高负载下的稳定性、容错性与可监控性。 4. 跨团队协作与技术沉淀 ○ 与产品、业务、后端及硬件团队紧密协作,推动AI能力在真实业务场景中的落地。 ○ 输出技术文档、最佳实践,参与构建公司级AI工程化平台与工具链。
我们正在寻找一位具备深厚数据产品经验、跨业务视野和系统化规划能力的高级/资深数据产品专家,负责推动高德地图在大数据分析、用户理解、行为洞察与数据治理等领域的平台级产品建设。该角色将主导多个关键数据产品的战略规划与落地执行,打造面向未来的数据驱动型基础设施, ● 【数据应用落地业务场景】 ○ 负责北斗平台(包含经营分析、行为分析、供给分析、各类业务专题场景等) 的产品架构设计与演进规划,满足业务针对各类分析场景的业务应用价值落地。 ● 【数据资产管理】 ○ 面对数据供给者团队,建立一套简易高效率的资产维护工具,帮助数据供给者高效、高质量地维护数据资产。并作为平台方推行资产分级管理和数据运营机制。 ● 【可信资产门户】 ○ 打造企业级官方权威数据资产字典,正式推出。作为全公司统一的数据目录和知识库,它将帮助大家低门槛、快速地发现、理解、评估所需数据, ● 【智能化探索落地】 ○ 面向数据使用者,并向AI 智能化、 Agent 进化(数据应用方向)。 实现分析师的智能分身Agent, 可落地接管数据常寻与分探索类场景, 数据对外进行全面推广应用。实现分析师的智能分身Agent落地,并为Agent的使用量和准确度负责 期望带来的关键改变 你将不仅是平台的建设者,更是数据价值的定义者与推动者。我们期待你带来以下层面的关键突破: ● 【 从“报表工具”到“智能决策引擎”的跃迁】 ○ 打破传统BI仅做数据展示的局限,构建具备高级归因、异动预警、预测推演、自动洞察能力的下一代分析平台,让数据主动说话。 ● 【从“数据生产”到“数据消费”的全局视角重构】 ○ 建立以业务价值为导向的数据服务体系,实现数据从“被查询”到“被推荐”、“被调用”、“被集成”的转变,显著提升数据使用效率与覆盖率。 ● 【 从“单点能力”到“平台通用化”的升级】 ○ 打造具备高度抽象能力和横向复用性的数据平台产品,支撑高德多条业务线(导航、出行、本地生活 等)共性需求,避免重复造轮子。 ● 【 从“被动响应”到“前瞻引领”的思维进化】 ○ 超越“接需求—做功能”的模式,能够基于业务发展趋势提前布局数据能力建设,例如预判新业务场景所需的数据模型与分析框架。 ● 【 从“工程实现”到“商业影响”的价值闭环】 ○ 推动数据能力深度嵌入业务链路(如通过用户画像优化投放ROI、通过路径分析提升转化率),形成可量化、可持续的数据驱动增长机制。