字节跳动LLM算法专家
社招全职3年以上A199569地点:深圳状态:招聘
任职要求
1、计算机相关专业本科及以上学历,3年以上深度学习算法研究与开发经验,具有LLM开发和实际落地经验; 2、具备LLM相关算法的扎实基础,包括但不限于单模态/多模态LLM训练(RAG/SFT/RLHF/Prompt)、部署和蒸馏等领域的全面学习和实践经验; 3、熟悉主流的Bert/Transformer/ViT/Clip等主流预训练模型,熟练掌握TensorFlow/PyTorch/…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
1、负责字节跳动泛体验、泛安全和泛质量领域各业务场景下,LLM算法应用研究与算法落地工作,业务场景包括但不限于风险挖掘/问题发现/信息检索/知识图谱/智能对话/信息总结等; 2、跟踪LLM领域的最新研究成果,用以持续提升算法应用效果,研究方向包括但不限于语言LLM、多模态LLM,Prompt工程/RAG/Agents/SFT/RLHF等LLM相关前沿技术; 3、深度参与产品研发项目,和产品经理/业务研发/业务质量/运营等同学密切配合,提高项目整体效率和收益。
包括英文材料
学历+
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
RAG+
https://www.youtube.com/watch?v=sVcwVQRHIc8
Learn how to implement RAG (Retrieval Augmented Generation) from scratch, straight from a LangChain software engineer.
SFT+
https://cameronrwolfe.substack.com/p/understanding-and-using-supervised
Understanding how SFT works from the idea to a working implementation...
还有更多 •••
相关职位
社招D3967
1、LLM模型应用落地:参与LLM在搜索内部的应用,探索LLM的创新落地场景; 2、RAG技术研究与落地:参与RAG技术在搜索内部的应用与创新,提升快手搜索智能问答效果; 3、技术优化与创新:持续优化现有的算法技术,推动算法创新,不断业务效果和用户体验; 4、跨团队合作:与产品团队、工程团队和业务团队紧密合作,理解业务需求,将算法技术转化为实际的产品和解决方案; 5、算法评估与改进:负责对算法模型进行评估和改进,提高算法的准确性、效率和可解释性。
更新于 2025-04-03北京
社招3年以上A84369
1、负责字节跳动DevOps各业务场景中,LLM算法在需求设计、开发、测试、上线等软件工程领域的应用研究及算法落地工作,致力于提升研发效率和测试质量; 2、跟踪LLM领域的最新研究成果,用以持续提升算法应用效果,研究方向包括但不限于语言LLM、多模态LLM,Prompt工程/RAG/Agents/SFT/RLHF等LLM相关前沿技术; 3、深度参与产品研发项目,和产品经理/业务研发/业务质量等同学密切配合,提高项目整体效率和收益。
更新于 2024-12-13杭州
社招3年以上A253093
1、负责字节跳动DevOps各业务场景中,LLM算法在需求设计、开发、测试、上线等软件工程领域的应用研究及算法落地工作,致力于提升研发效率和测试质量; 2、跟踪LLM领域的最新研究成果,用以持续提升算法应用效果,研究方向包括但不限于语言LLM、多模态LLM,Prompt工程/RAG/Agents/SFT/RLHF等LLM相关前沿技术; 3、深度参与产品研发项目,和产品经理/业务研发/业务质量等同学密切配合,提高项目整体效率和收益。
更新于 2024-12-05北京