logo of bytedance

字节跳动大模型应用算法工程师(智能推荐方向)-Data

社招全职A114276地点:北京状态:招聘

任职要求


1、本科及以上学历,扎实的算法基础,出色的编码能力,良好的产品意识,具备创新创业精神,以及良好的沟通协作能力;
2、在搜推广、NLP、CV、大模型应用等领域有实际的开发和从业经验者优先;
3、熟悉大模型相关技术,有PE、SFT、RLHF等大模型实操经验者优先;
4、加分项:具备英语或日语的书面或口头沟通能力。

工作职责


1、为全球企业级客户提供高效的算法服务,包括但不限于传统搜推广、大模型技术与搜推结合以及大模型应用产品;
2、理解不同行业的客户场景和需求,落地相应的算法解决方案,包括但不限于电商/内容推荐、基于大模型技术的搜索方案以及知识库问答等LLM上层应用;
3、探索大模型相关方向的前沿技术,推进相关技术在业务场景的落地,包括但不限于长序列建模/多模态/RAG/智能体;
4、与产品研发团队协作建设平台产品,在多云环境下为全球范围内的客户提供算法解决方案,包括但不限于智能推荐平台和大模型搜推平台。
包括英文材料
学历+
算法+
NLP+
大模型+
SFT+
相关职位

logo of bytedance
社招A235254

1、为全球企业级客户提供高效的算法服务,包括但不限于传统搜推广、大模型技术与搜推结合以及大模型应用产品; 2、理解不同行业的客户场景和需求,落地相应的算法解决方案,包括但不限于电商/内容推荐、基于大模型技术的搜索方案以及知识库问答等LLM上层应用; 3、探索大模型相关方向的前沿技术,推进相关技术在业务场景的落地,包括但不限于长序列建模/多模态/RAG/智能体; 4、与产品研发团队协作建设平台产品,在多云环境下为全球范围内的客户提供算法解决方案,包括但不限于智能推荐平台和大模型搜推平台。

更新于 2024-05-09
logo of bytedance
社招A189664A

1、为全球企业级客户提供高效的算法服务,包括但不限于传统搜推广、大模型技术与搜推结合以及大模型应用产品; 2、理解不同行业的客户场景和需求,落地相应的算法解决方案,包括但不限于电商/内容推荐、基于大模型技术的搜索方案以及知识库问答等LLM上层应用; 3、探索大模型相关方向的前沿技术,推进相关技术在业务场景的落地,包括但不限于长序列建模/多模态/RAG/智能体; 4、与产品研发团队协作建设平台产品,在多云环境下为全球范围内的客户提供算法解决方案,包括但不限于智能推荐平台和大模型搜推平台。

更新于 2024-05-09
logo of bytedance
校招A34031A

团队介绍:Data AML是字节跳动的机器学习中台,为抖音/今日头条/西瓜视频等业务提供推荐/广告/CV/语音/NLP的训练和推理系统。为公司内业务部门提供强大的机器学习算力,并在这些业务的问题上研究一些具有通用性和创新性的算法。同时,也通过火山引擎将一些机器学习/推荐系统的核心能力提供给外部企业客户。 1、为全球企业级客户提供高效的算法服务,包括但不限于传统搜推广、大模型技术与搜推结合以及大模型应用产品; 2、理解不同行业的客户场景和需求,落地相应的算法解决方案,包括但不限于电商/内容推荐、基于大模型技术的搜索方案以及知识库问答等LLM上层应用; 3、探索大模型相关方向的前沿技术,推进相关技术在业务场景的落地,包括但不限于长序列建模/多模态/RAG/智能体; 4、与产品研发团队协作建设平台产品,在多云环境下为全球范围内的客户提供算法解决方案,包括但不限于智能推荐平台和大模型搜推平台。

更新于 2025-08-04
logo of bytedance
社招A15618

团队介绍:Data-抖音团队,负责抖音APP的推荐算法、内容算法、对话算法及大数据工作,对接各场景业务(短视频,直播,图文,电商,社交,生态,投稿,消息,同城,生活服务,音乐,评论,内容理解&安全、智能对话等)。我们的工作涉及大规模推荐算法的优化、复杂约束的优化问题的解决、内容理解、LLM应用以及新业务方向探索、CV/NLP等多个学术领域的算法改进工作、对多种场景的推荐架构的设计和实现和对产品数据的复杂深入的分析工作。在这里,你可以深入钻研机器学习算法的改进和优化,探索工业界最领先的推荐系统架构和推荐大模型算法、可以通过使用最新的大模型等技术支持抖音的数字人、智能客服、AI工具等创新探索;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条/剪映等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案,大幅提升推荐模型的天花板。 【课题挑战/必要性】 自然语言领域LLM的出现,效果在众多垂直任务上都好于sota模型,从推荐领域看过去工业级推荐系统在较长的时间没有大幅的变化过。本项目旨在探索推荐领域下的大模型方案,改变现在持续了较长时间的推荐模型结构和Infra的基本范式,且效果大幅好于现在的模型,在抖音短视频/直播等多个业务场景上得到应用。但是怎么做好推荐领域的大模型也是一个比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,以及如何短视频、直播等体裁上做号内容的表征也是需要被解决的问题,这里会从模型参数scaling up、内容和用户的表征学习、内容理解多模态、超长序列建模、生成式推荐模型等多个方向来做深入的研究,对推荐场景的模型做系统性的升级。 【课题内容】 跨模态的对齐和统一表征学习(推荐、内容多模态、自然语言); 推荐模型参数和算力scaling up; 超长序列建模; 生成式推荐模型; 【涉及研究方向】 推荐算法、推荐大模型

更新于 2025-06-05