字节跳动多传感器融合算法工程师-PICO
社招全职A218705地点:上海状态:招聘
任职要求
1、硕士研究生及以上学历,计算机、电子、自动化等相关专业; 2、熟悉视觉SLAM算法原理(VSLAM、VIO、RGB-D SLAM等),至少精通一种主流的SLAM开源系统,有相关项目经验; 3、熟悉OpenCV、Eigen、G2o、Ceres等数学计算库,熟练掌握C/C++,有较强的代码实现能力; 4、熟悉任意主流的深度学习框架,有一定的深度模型训练和部署经验; 5、具备移动端平台上定位或深度学习模型相关落地项目经验。 加分项: 1、有深度学习在多模态数据融合中的应用经验(如Transformer、深度学习SLAM); 2、在顶级会议或期刊(如ICRA、CVPR、ICCV、ICRA、NeurIPS)发表过相关领域的论文; 3、有自动驾驶、机器人、AR/VR系统开发经验。
工作职责
1、负责多传感器(视觉、IMU等)融合方面空间定位算法的研发工作; 2、研究Transformer、卷积网络(CNN)等深度学习模型在多传感器融合中的应用; 3、负责算法在实际基于移动平台产品中的优化和落地。
包括英文材料
学历+
SLAM+
https://docs.mrpt.org/reference/latest/tutorial-slam-for-beginners-the-basics.html
[英文] SLAM for Dummies
https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/1aslam_blas_repo.pdf
A Tutorial Approach to Simultaneous Localization and Mapping
https://ouster.com/insights/blog/introduction-to-slam-simultaneous-localization-and-mapping
SLAM is an essential piece in robotics that helps robots to estimate their pose – the position and orientation – on the map while creating the map of the environment to carry out autonomous activities.
[英文] What Is SLAM?
https://www.mathworks.com/discovery/slam.html
How it works, types of SLAM algorithms, and getting started
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
CVPR+
https://cvpr.thecvf.com/
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
NeurIPS+
https://neurips.cc/
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
相关职位
社招IDG
-负责Lidar、Camera、Radar等传感器障碍物感知结果的关联、跟踪及相关障碍物属性的研发工作 -负责障碍物状态估计,对多传感器感知结果进行融合,如进行卡尔曼滤波、扩展卡尔曼滤波、粒子滤波等算法开发 -负责障碍物速度属性的研发 -负责对研发算法进行一定程度的自测验证,例如进行必要的数据挖掘工作、验证框架与度量指标的研发工作等
更新于 2024-05-16
社招5年以上
1. 负责飞行器的多传感器数据融合算法的设计与实现,包括但不限于IMU、GPS、磁力计、气压计、视觉传感器等; 2. 开展飞行控制系统中状态估计算法的研究与开发,提升系统性能; 3. 分析飞行测试数据,根据结果调整和优化算法及参数。
更新于 2024-12-18
社招4年以上算法
1. 研发基于视觉、GNSS、IMU等多传感器的VIO、GVIO等紧组合算法,并落地产品; 2. 研发传感器校准算法、故障诊断与隔离算法和自动化测试系统; 3. 研发基于视觉等多传感器语义,并落地产品。
更新于 2025-05-26