高德地图高德-多模态大模型/端到端算法工程师/专家-车道级导航方向-视觉技术中心(急招)
任职要求
1. 自然语言处理、计算机视觉、人工智能等相关专业的硕士生/博士生,对发文章有兴趣,具备良好的英文写作能力; 2. 发表过CV&AI顶会论文优先,ACM编程竞赛、数据建模竞赛等竞赛获奖优先; 3. 动手实现能力强,代码基本功扎实,精通基于Python的算法开发;熟练掌握pytorch/tensorflow/mxnet等至少一项深度学习框架; 4. 自驱力强、充满好奇心、团队合作、沟通能力佳。 我们需要这样的你 -有对于AGI的技术追求,对于前沿技术有浓厚兴趣,坚信AI驱动产品与业务创新 -有扎实的算法基础和动手能力,包含但不限于模型的训练、推理和部署等方面 -在大模型、多模态、AIGC、三维几何、自动驾驶、机器人等方面有丰富的项目经验
工作职责
我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 团队主要聚焦多模态大模型及端到端模型在车端导航及定位应用,我们期待你的工作将覆盖以下至少一个技术方向即可: 1. 在端到端自动驾驶、BEV环境感知、多模态融合、强化学习等领域具备丰富且有独创性的研究经历; 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等; 3. 了解大模型模型的训练/微调/推理加速方法,包括但不限于模型结构调优、训练效率提升、高效低成本微调、Muti-token推理,模型部署加速等; 4. 参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用; 5. 负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和复杂场景泛化能力; 6. 设计和实现端到端自动驾驶模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。
职位描述: 1、负责智能辅助驾驶端到端算法的设计与研发工作,主要面向停车场/地库/园区低速场景,开发端到端planner模型; 2、负责端到端算法在智能辅助驾驶应用中的开发、迭代、优化、部署等。 职位地点:上海·汽车创新港
1、自动驾驶多模态算法研究与应用:负责自动驾驶领域的多模态大模型技术研究及算法开发,包括视觉语言模型(VLM)、一段式端到端模型,以及多模态大模型在复杂场景下的技术整合。 2、多模态感知基础模型研究:开展文本(Text)、视觉(Vision)与点云(Point)融合的多模态感知基础模型研究,包括但不限于4D表征、推理(Reasoning)感知、规划等研究方向。 3、视觉-语言-动作(VLA)大模型研究:负责基于视觉-语言-动作(VLA)架构的端到端方案研究,包括数据生产方案、VLA模型架构、效率优化等方向设计与研发。 4、预训练模型研发:研究基于未来帧预测的预训练模型,结合端到端框架设计,探索其在自动驾驶感知、决策与控制闭环中的可行性及性能提升方向。
我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 团队主要聚焦多模态大模型技术在端到端自动驾驶的应用,我们期待你的工作将覆盖以下至少一个技术方向即可: 1. 在端到端自动驾驶、多模态大模型的训练及调优、BEV感知、基于深度学习/强化学习的规划控制、RLHF、驾驶场景视频生成等领域具备丰富且有独创性的研究经历。 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等。 3. 了解大模型模型的训练/微调/推理加速方法,包括但不限于模型结构调优、训练效率提升、高效低成本微调、Muti-token推理,模型部署加速等。 4. 参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用。 5. 负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和泛化能力。 6. 设计和实现端到端自动驾驶模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。