vivoAIGC图像算法工程师/专家
社招全职3年以上研发类地点:杭州 | 南京 | 深圳状态:招聘
任职要求
一、基础能力: 1)计算机、人工智能、图像处理等相关专业硕士及以上学历; 2)扎实的深度学习基础,熟练掌握 PyTorch / TensorFlow 等主流框架; 3)有扎实的coding能力,熟练掌握python和c++; 4)熟悉图像识别、检测、分割、生成等主流任务与网络结构; 5)能独立完成算法设计、模型训练、上线调优等完整流程。 二、加分项: 1)有多模态大模型、CLIP、BLIP、SAM、Diffusion、ControlNet 等相关经验; 2)有端侧部署优化经验(CoreML, ONNX, TensorRT等); 3)有实际产品落地经验,如智能相册、人像美颜、图像创作工具等; 4)熟悉大模型(如 GPT-4V, Gemini, Claude)与视觉任务结合。
工作职责
作为核心算法成员,参与AI图像相关算法研发,主要服务于下一代智能相册系统。主要工作包括: 一、图像理解方向: 1)开发基于多模态语义的图像理解算法:人物识别、事件聚类、情绪识别、场景识别等;构建个性化的图像语义标签体系; 2)设计图像内容质量评估模型(重复、模糊、人脸表情等)提升用户体验; 3)探索RAG、多模态图像大模型、文本大模型联动下,agent能力建设和开发。 二、 图像AIGC方向(创作与编辑): 1)研究并实现图像生成与编辑算法,如背景替换、人像美化、风格迁移、文生图,图生图等; 2)参与基于 Diffusion基础模型训练; 3)参与ControlNet、Inpainting、aigc编辑大模型等前沿应用模型的业务开发和落地;
包括英文材料
图像处理+
https://opencv.org/blog/computer-vision-and-image-processing/
This fascinating journey involves two key fields: Computer Vision and Image Processing.
https://www.geeksforgeeks.org/python/image-processing-in-python/
Image processing involves analyzing and modifying digital images using computer algorithms.
https://www.youtube.com/watch?v=kSqxn6zGE0c
In this Introduction to Image Processing with Python, kaggle grandmaster Rob Mulla shows how to work with image data in python!
学历+
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Core ML+
[英文] Getting Started
https://apple.github.io/coremltools/docs-guides/source/introductory-quickstart.html
Core ML Tools can convert trained models from other frameworks into an in-memory representation of the Core ML model.
https://developer.apple.com/machine-learning/core-ml/
Core ML is optimized for on-device performance of a broad variety of model types by leveraging Apple silicon and minimizing memory footprint and power consumption.
https://www.youtube.com/watch?v=g3yj9_DHrME
Bring the power of machine learning directly to your apps with Core ML.
ONNX+
https://github.com/onnx/tutorials
Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models.
[英文] Introduction to ONNX
https://onnx.ai/onnx/intro/
This documentation describes the ONNX concepts (Open Neural Network Exchange).
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
GPT+
https://www.youtube.com/watch?v=kCc8FmEb1nY
We build a Generatively Pretrained Transformer (GPT), following the paper "Attention is All You Need" and OpenAI's GPT-2 / GPT-3.
相关职位
社招5-10年研发类
1、负责基于AIGC技术、多模态技术和强化学习技术打造移动影像下一代计算成像算法架构,对最终效果竞争力负责。 2、负责基于上述架构的核心图像算法的规划、预研与商用落地。负责核心数据资产的构建。 3、跟踪和探索AIGC方向研究前沿,识别学术界/业界优秀研究资源,进行技术合作,实现图像内容生成和增强方向上关键新技术的长期布局和突破。
更新于 2024-04-30
社招5-10年研发类
1、预研和研发具有行业竞争力的人像算法产品,聚焦在AIGC、图像生成、图像超分、图像增强等核心AI算法的技术构建和模型开发; 2、深入研究图像处理算法问题,设计并优化算法以满足产品需求,主导项目上线; 3、跟进业界最新论文和技术,对算法进行产品化预研和技术突破。
更新于 2025-03-21
社招3年以上A128917
1. 负责手机影像相关图像算法的研发,研发方向包括:基于深度学习的图像与视频感知算法(如目标检测、语义分割、显著性检测、手势检测、深度估计等)、大模型技术(LLM、AIGC、多模态等)、图像与视频质量/美学评价算法、图像与视频优化算法(包括但不限于美颜、滤镜、特效、消除、选帧、裁切、合成等); 2. 上述方向的数据集构建及预处理工作,包括收集图像数据,标注数据,数据增强和数据的清洗等; 3. 上述方向的模型优化工作,包括但不限于模型量化、剪枝、稀疏化、结构搜索(NAS); 4. 负责效果,功能原型设计,并支撑算法在手机影像应用场景的商用落地; 5. 与芯片、系统架构、软件、验证、调试工程师等共同完成相应实现方案的开发工作; 6. 结合AI技术与硬件特性实现对创新方案的探索与预研,撰写相关专利;
更新于 2025-05-26