小米Camera 图像算法工程师/专家
社招全职3年以上A128917地点:北京 | 上海 | 西安状态:招聘
任职要求
1. 计算机科学、应用数学、模式识别、计算机视觉、人工智能或相关专业硕士或博士学历; 2. 具备3年以上图像处理、计算机视觉、深度学习、AI芯片等相关领域研发经验; 3. 精通图像处理算法(如OpenCV)及深度学习框架(如PyTorch、TensorFlow等),对神经网络结构自搜索及压缩、性能优化、训练和调参等有丰富开发调试经验; 4. 参加过完整算法特性的设计、算法在手机平台的优化、算法商用落地者优先; 5. 发表高质量计算机视觉相关期刊、会议论文者优先,高质量学术竞赛获奖者优先;
工作职责
1. 负责手机影像相关图像算法的研发,研发方向包括:基于深度学习的图像与视频感知算法(如目标检测、语义分割、显著性检测、手势检测、深度估计等)、大模型技术(LLM、AIGC、多模态等)、图像与视频质量/美学评价算法、图像与视频优化算法(包括但不限于美颜、滤镜、特效、消除、选帧、裁切、合成等); 2. 上述方向的数据集构建及预处理工作,包括收集图像数据,标注数据,数据增强和数据的清洗等; 3. 上述方向的模型优化工作,包括但不限于模型量化、剪枝、稀疏化、结构搜索(NAS); 4. 负责效果,功能原型设计,并支撑算法在手机影像应用场景的商用落地; 5. 与芯片、系统架构、软件、验证、调试工程师等共同完成相应实现方案的开发工作; 6. 结合AI技术与硬件特性实现对创新方案的探索与预研,撰写相关专利;
包括英文材料
模式识别+
https://www.mathworks.com/discovery/pattern-recognition.html
Pattern recognition is the process of classifying input data into objects, classes, or categories using computer algorithms based on key features or regularities.
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science.
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
学历+
图像处理+
https://opencv.org/blog/computer-vision-and-image-processing/
This fascinating journey involves two key fields: Computer Vision and Image Processing.
https://www.geeksforgeeks.org/python/image-processing-in-python/
Image processing involves analyzing and modifying digital images using computer algorithms.
https://www.youtube.com/watch?v=kSqxn6zGE0c
In this Introduction to Image Processing with Python, kaggle grandmaster Rob Mulla shows how to work with image data in python!
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
相关职位
社招3年以上A241424
1. 负责android Camera业务开发,重点基于Camera图像业务方案需求实现Camera Hal业务特性方案设计开发与交付落地,理解ISP pipeline业务逻辑和图像算法基础逻辑,设计软硬结合业务方案链路,算法集成方案等; 2. 负责Camera软件方案性能/功耗/内存的优化设计,满足产品的性能功耗热体验指标,分析和拆解当前业务方案的性能内存功耗痛点,设计优化方案落地,评估关键业务方案的性能指标、内存和功耗基线等; 3. 负责同芯片解决方案对齐业务设计,方案规划与路标,负责同算法对齐算法集成环境与上下文信息流、数据流控制,跨组件拉通实现软件方案端到端交付; 4. 负责影像行业的行业洞察与竞品分析,针对影像业务发展方向规划影像业务软件架构的迭代升级,支撑算法与器件的发展诉求,提升架构的可维护性与可扩展性,优化软件交付效率。
更新于 2025-05-26
社招3年以上研发类
【】 1. 从画质专业维度和用户维度,搭建并完善图像画质评价体系,实现主客观量化及其标准制定,持续优化影像评测模型和标准,发布符合行业规范的内部评测标准白皮书; 2. 负责画质评测场景数据库的搭建,包括实验室和自然场景数据标准化采集,实现主观场景到客观场景的理论化映射; 3. 跟踪行业趋势,主导开发基于AI的画质自动化评测技术,搭建智能化评测平台,保证评测时效性及准确性,提高评测置信度; 4. 负责建立图像效果过程质量管控标准、流程、检查单、工具集,优化画质交付链路,提升交付效率。 【