顺丰运筹优化算法工程师
社招全职3-5年地点:深圳状态:招聘
任职要求
1. 硕士及以上学历,运筹学、工业工程、计算机、应用数学等相关专业,3年以上运筹优化项目经验; 2. 熟悉线性规划、整数规划、动态规划等算法原理,具备列生成、分支定价、增广拉格朗日等精确算法和启发式算法的开发经验,以及多目标问题优化经验; 3. 业务理解与抽象建模能力,熟悉常见物流优化场景如选址、路径规划、硬件调度等; 4. 熟练使用优化求解器(CPLEX/Gurobi/Ortools)、开发语言(Python/Java/C++)、分布式计算框架(Spark/Flink); 5. 具备物流仿真工具使用经验者优先,有仓储/物流/智能制造场景的硬件调度案例者优先。
工作职责
1. 优化转运中心内分拣线、分拣柜、机器人等设备的生产排程,提升整体产能利用率,降低运营成本,保障高效履约; 2. 负责任务分配、流向优化、资源分配等算法设计与开发,通过产能/成本/时效多维度优化目标评估算法性能,量化算法收益;
包括英文材料
学历+
运筹优化+
https://medium.com/gousto-engineering-techbrunch/an-introduction-to-operations-research-5a9e898b6c60
Operations research (OR) is a scientific approach to determining the optimal solution to a defined business problem.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
CPLEX+
https://home.engineering.iastate.edu/~jdm/ee458/CPLEX-GettingStarted2017.pdf
Describes the components of CPLEX: Interactive Optimizer, Concert Technology, Callable Library.
https://www.ibm.com/docs/en/icos/22.1.2?topic=ide-getting-started-tutorial
A tutorial in which you launch the IDE, create an empty project, enter an OPL model, add data, add a settings file, create run configurations and execute them.
https://www.youtube.com/watch?v=70HH-GNR9uM
Introduction to CPLEX OPL, Work Environment, Creating a new project, run configuration, data and model files.
Gurobi+
https://gurobi-machinelearning.readthedocs.io/en/stable/user/start.html
A Python package to help use trained regression models in mathematical optimization models.
https://www.youtube.com/watch?v=Er5RM06D9i8&list=PLHiHZENG6W8B_65-Unq-G59PtQtEc1Xj4
This session will provide a brief overview of the training.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
相关职位
社招4年以上A167771
聚焦于电子产品的供应链计划领域,利用运筹学理论与方法,优化业务流程。挖掘和论证数据驱动的决策技术在生产制造领域中的应用价值。参与或主导包括(但不限于)S&OP、MDS、MPS、APS等实际业务环节中的算法需求提炼、方案设计及算法开发。
更新于 2025-05-15
社招4年以上A167771
聚焦于电子产品的供应链计划领域,利用运筹学理论与方法,优化业务流程。挖掘和论证数据驱动的决策技术在生产制造领域中的应用价值。参与或主导包括(但不限于)S&OP、MDS、MPS、APS等实际业务环节中的算法需求提炼、方案设计及算法开发。
更新于 2025-05-12
实习菜鸟集团2026
1、负责运筹优化/机制设计方向的算法研究和开发,包括但不限于组合优化、博弈论、在线优化、随机优化、混合整数优化、线性规划、控制论、高性能求解软件研发、高性能数值代数方法和实现等; 2、负责将优化技术和机器学习等技术有效结合并应用于菜鸟的物流和计算资源调度等领域,实现成本降低,效率提高,提高核心竞争力; 3、负责大数据的分析和建模,沉淀行业解决方案,协助拓展业务边界。
更新于 2025-05-19