阿里巴巴算法技术-冷启推荐研究型实习生项目-推荐算法实习生
实习兼职淘天集团研究型实习生地点:杭州状态:招聘
任职要求
1. 自然语言处理、机器学习、数据挖掘、人工智能等相关专业的硕士生/博士生; 2. 熟练掌握Tensorflow、Pytorch等深度学习框架,扎实的编程基础,具备独立的算法实现能力; 3. 熟悉多模态模型的建模与建模,有多模态预训练大模型如BERT、GPT、Vision Transformer和CLIP等实践经验者优先; 4. 良好的逻辑分析能力和数理基础,对算法原理及应用有较深入的理解,在人工智能相关的各类国际顶级会议/期刊中发表过论文者优先。
工作职责
1. 探索多模态(去ID化)在电商冷启场景的落地,优化冷启商品/内容的分发效率; 2. 探索冷启动与跨域推荐,构建可迁移的统一冷启推荐大模型,实现不同业务场景下的高效迁移和应用; 3. 优化大规模模态编码器的训练及推理策略,提高资源利用效率,降低模型训练时间和GPU内存消耗; 4. 结合以上方向的探索和研究,撰写发表论文,和业界、学术界保持良好的交流。
包括英文材料
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
BERT+
https://www.youtube.com/watch?v=xI0HHN5XKDo
Understand the BERT Transformer in and out.
GPT+
https://www.youtube.com/watch?v=kCc8FmEb1nY
We build a Generatively Pretrained Transformer (GPT), following the paper "Attention is All You Need" and OpenAI's GPT-2 / GPT-3.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
相关职位
社招2年以上
1、负责淘特搜索算法体系建设,包括Query理解、相关性优化、超大规模的召回/精排/重排等链路优化,底纹/下拉/搜索发现等导购产品优化,广告与自然结果智能混排机制、优质商品的冷启/助推/打爆等商品机制的构建,提升用户搜索买的购物体验,提升成交、营收规模等。 2、负责淘特推荐算法体系建设,深入理解用户需求,设计优化推荐全链路包括超大规模的召回/粗排/精排/重排等链路提升推荐效率,基于认知智能等提升推荐的发现性、丰富性等用户体验指标,并构建广告与自然结果智能混排、商品成长等机制策略,提升营收规模、优质供给数量等; 3、参与前沿问题的探索与研究,结合实际应用场景,提供全面的技术解决方案。
更新于 2025-10-14
社招3年以上技术类-算法
岗位职责 1.设计并优化广告推荐策略,包括点击率(CTR)预测、转化率(CVR)建模、ROI建模等; 2.基于各类数据,优化用户画像和场景特征,开发个性化推荐算法,提升广告匹配效率和用户体验,包括但不限于媒体用户冷启优化等; 3.分析广告推荐数据,持续迭代算法模型以提升ROI(投资回报率); 4.与产品、运营团队协作,推动算法在广告平台中的落地实施; 5.研究前沿机器学习/深度学习技术(如大模型、图神经网络),探索广告场景下的创新应用。
更新于 2025-09-04
社招内容理解
1. 参与亿级用户规模的推荐系统优化,提升笔记发布量和发布作者规模,繁荣作者生态; 2. 基于因果推断、大语言模型等技术优化流量分配机制,提升新笔记冷启效率,促进社区长期健康发展; 3. 负责小红书全站关注关系构建和关系内容分发,通过内容推荐和用户推荐,提升私域规模和用户社交体验; 4. 跟踪业界深度学习/强化学习/跨域学习/图网络等领域前沿进展,灵活应用于业务中取得实际收益。
更新于 2025-09-18