
哈啰资深数据仓库开发工程师
社招全职3年以上技术地点:上海状态:招聘
任职要求
1)全日制本科以上学历,计算机、数据相关专业,3年以上数据仓库相关经验; 2)熟悉数据仓库模型设计与ETL开发,掌握Kimball的维度建模设计方法,具备海量数据加工处理(ETL)相关经验; 3)熟悉Hadoop生态相关技术并有相关实践经验,包括但不限于Hadoop/hive/hbase/spark/kafka/flink/presto/kylin等; 4)具有丰富的数据开发经验,有hive sql/spark sql/MapReduce调优经验,对数据处理、数据建模、数据治理等有深刻认识和实战经验; 5)掌握一门或多门编程语言,如java/python/shell/Scala等; 6)对数据敏感,能够快速理解业务,并独立完成业务数据模型设计及开发; 7)具有较好的沟通能力、学习能力和团队合作精神,乐于挑战自我,具有强烈的进取心和求知欲。
工作职责
1)负责企业级数据仓库建设和管理,建设PB级数据资产管理平台,包括但不限于数据模型、元数据管理等; 2)参与平台数据治理相关工作,负责数据质量、数据一致性及稳定性保障等建设; 3)参与数仓底层的架构设计和性能优化,驱动数据产品与应用的研发,发掘数据价值,以数据驱动业务不断发展;
包括英文材料
学历+
数据仓库+
https://www.youtube.com/watch?v=9GVqKuTVANE
From Zero to Data Warehouse Hero: A Full SQL Project Walkthrough and Real Industry Experience!
https://www.youtube.com/watch?v=k4tK2ttdSDg
ETL+
https://www.ibm.com/think/topics/etl
ETL—meaning extract, transform, load—is a data integration process that combines, cleans and organizes data from multiple sources into a single, consistent data set for storage in a data warehouse, data lake or other target system.
https://www.youtube.com/watch?v=OW5OgsLpDCQ
It explains what ETL is and what it can do for you to improve your data analysis and productivity.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
HBase+
[英文] HBase Tutorial
https://www.tutorialspoint.com/hbase/index.htm
HBase is a data model that is similar to Google's big table designed to provide quick random access to huge amounts of structured data. This tutorial provides an introduction to HBase, the procedures to set up HBase on Hadoop File Systems, and ways to interact with HBase shell.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Kafka+
https://developer.confluent.io/what-is-apache-kafka/
https://www.youtube.com/watch?v=CU44hKLMg7k
https://www.youtube.com/watch?v=j4bqyAMMb7o&list=PLa7VYi0yPIH0KbnJQcMv5N9iW8HkZHztH
In this Apache Kafka fundamentals course, we introduce you to the basic Apache Kafka elements and APIs, as well as the broader Kafka ecosystem.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
Presto+
[英文] What is Presto?
https://prestodb.io/what-is-presto/
https://www.tutorialspoint.com/apache_presto/index.htm
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
MapReduce+
https://www.youtube.com/watch?v=bcjSe0xCHbE
https://www.youtube.com/watch?v=cHGaQz0E7AU
In this video I explain the basics of Map Reduce model, an important concept for any software engineer to be aware of.
数据治理+
https://www.ibm.com/think/topics/data-governance
Data governance is the data management discipline that focuses on the quality, security and availability of an organization’s data.
https://www.youtube.com/watch?v=uPsUjKLHLAg
Building data fabric eliminates the technological complexities of data governance so users can connect to the right data at the right time, regardless of where it resides.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Bash+
[英文] The Bash Guide
https://guide.bash.academy/
A quality-driven guide through the shell's many features.
https://www.youtube.com/watch?v=tK9Oc6AEnR4
Understanding how to use bash scripting will enhance your productivity by automating tasks, streamlining processes, and making your workflow more efficient.
Scala+
相关职位
社招5-10年网易职能
1、负责网易集团财经数据中台的数仓规划与设计 2、完成相关原始数据采集、清洗、整理、去重和治理,保证数据及时性、完整性、一致性和准确性。 3、参与业务需求调研,根据业务需求设计数据仓库维度模型,并完成数据模型开发,沉淀数据指标。 4、持续改进优化ETL、分析处理等问题,对结构化的数据做数据分析; 5、对项目开发进度、代码质量进行管控、完成技术文档的沉淀。
更新于 2025-10-10
社招5-10年技术
1. 负责滴滴网约车核心业务的数据仓库搭建及开发, 进行领域数仓建模并持续优化,持续提升数据效率; 2. 负责抽象核心业务流程,沉淀好用的数据架构、通用的分析框架和数据应用产品; 3. 负责数据开发流程及架构优化,不断完善数据治理体系,持续提升数仓建设的质量; 4. 探索新技术应用,实现技术变革升级
更新于 2025-07-11
社招3年以上L5000
1、主导财经业务相关主题的分布式数据仓库规划、设计、落地及运营; 2、主导财经数据资产公共层建设,从工具和效果上实现敏捷智能的目标; 3、深入了解业务,主动优化数据仓库实现数据治理与迭代闭环,不断提升数据质效。
更新于 2022-11-01