
哈啰激光雷达感知算法工程师(预测方向)
任职要求
1、学历与专业背景:硕士及以上学历,计算机科学、自动化、应用数学、车辆工程等相关专业,博士或3年以上相关经验者优先。 2、技术能力 2-1、算法基础:熟悉轨迹预测经典方法(如Social LSTM、MFP、VectorNet),掌握时序建模、概率图模型、多目标跟踪理论。 2-2、编程技能:精通C++/Python,熟悉ROS/ROS2框架,具备TensorRT、CUDA等嵌入式部署经验者优先。 工具与框架:熟练使用PyTorch/TensorFlow,熟悉点云处理库(PCL)、多传感器标定工具(如Autoware、Apollo)。 3、项目经验:需1-3年以上自动驾驶预测算法开发经验,主导或参与过轨迹预测、行为意图识别等实际项目,熟悉nuScenes、Argoverse等预测评测数据集。 4、数学与理论基础:扎实的概率统计、数值优化基础,熟悉马尔可夫决策过程(MDP)、蒙特卡洛方法,能独立设计预测模型中的不确定性量化模块。 加分项:熟悉车路协同(V2X)场景下的协同预测技术,或有高精地图与预测算法结合的经验。
工作职责
1、目标轨迹预测算法开发: 1-1、基于激光雷达点云数据,结合摄像头、毫米波雷达等多传感器信息,开发动态障碍物(如车辆、行人)的轨迹预测算法,包括短时轨迹预测、行为意图预测,并优化预测模型的准确性与实时性。 1-2、典型任务:长短期记忆网络(LSTM)、Transformer等深度学习模型的改进,融合时序信息与空间特征。 2、多模态数据融合与预测模型构建: 2-1:主导多传感器(激光雷达、摄像头、IMU等)数据的时空对齐与融合,设计联合预测框架,提升复杂场景(如十字路口、拥堵路段)下预测系统的鲁棒性。 2-2:涉及技术:卡尔曼滤波、粒子滤波、贝叶斯网络等。 3、预测算法验证与场景适配:通过仿真工具(如CARLA、LGSVL)和实车测试验证预测算法性能,分析极端场景(如紧急变道、鬼探头)的预测失败案例(badcase),优化模型泛化能力。 4、协同规划与控制模块:将预测结果与自动驾驶决策、路径规划模块深度集成,提供动态障碍物的未来轨迹概率分布,支持车辆避障、跟车等决策逻辑。
-负责Lidar、Camera、Radar等传感器障碍物感知结果的关联、跟踪及相关障碍物属性的研发工作 -负责障碍物状态估计,对多传感器感知结果进行融合,如进行卡尔曼滤波、扩展卡尔曼滤波、粒子滤波等算法开发 -负责障碍物速度属性的研发 -负责对研发算法进行一定程度的自测验证,例如进行必要的数据挖掘工作、验证框架与度量指标的研发工作等

高精地图和定位团队介绍 如果将无人车和人脑类比,高精地图和定位系统大致对应于后者中掌管空间记忆、感知和定位的部分。它的使命是为无人车提供翔实准确的道路3D几何和语义信息,让无人车对行驶环境了如指掌,从而在其中行动自如,我们同时还负责提供高速、精准的3D定位,让车辆每时每刻都知晓当前的精确位置。高精地图和定位在无人车技术栈中占据着非常重要的位置,感知、规划、控制、仿真等各大模块都要依赖它提供的道路环境以及车辆位置的信息对周围世界进行理解,做出正确的决策。文远知行的高精地图和定位团队和公司一起成长,完全自主构建了大规模高精地图,覆盖中美多个城市超过3000公里道路,提供精确达厘米级的3D结构数据以及车道线、交通信号等大量语义信息。自行研发的定位技术,基于激光雷达、相机、卫星及惯性导航等多传感器融合,能提供实时的厘米级定位,成功实现了在暴雨中自动驾驶穿越1.5公里长隧道。 在人工智能的应用中,高精地图和定位是比较独特的。我们知道,计算机视觉作为人工智能的重要分支,其核心问题分为语义理解和几何理解两大类,前者以解析图像中物体或场景的语义信息为目的,后者的目标则是重构3D场景以及对物体进行3D定位。在高精地图和定位系统中,恰恰这两大类技术都有着非常关键的应用。除此之外,我们还是高精度卫星、惯性导航等硬件的重度用户,多模态信号处理和融合更是我们的核心技术之一。因此,这是一个多学科高度综合的应用,无论你精通深度学习等机器学习技术,还是专攻3D重建、SLAM,又或是信号处理、多传感器融合高手,这里都有你一展身手的广阔空间。同时,我们致力搭建大规模、高可用的高精度地图系统,大数据和全栈开发的编程精英同样能找到用武之地。 1. 基于深度学习打造不依赖高精度地图的定位和实时地图系统,包括模型设计、训练、部署,车上系统反馈和形成数据闭环 2. 设计和构建深度神经网络模型,用于对传感器数据进行特征提取、数据融合和位置估计 3. 处理和分析大规模的自动驾驶系统相关的Camera、Lidar、GPS和IMU等各种传感器数据,利用深度学习技术进行特征提取、数据建模和预测分析 4. 进行深度学习模型的调优和调参,以提高模型的性能、效率和鲁棒性

关于公司 文远知行(WeRide)成立于 2017 年,是全球领先的 L4 级自动驾驶科技公司,致力于“以无人驾驶改变人类出行”,已在全球超过 25 个城市开展自动驾驶研发、测试及运营,累积自动驾驶里程超1600万公里,应用场景覆盖智慧出行、智慧货运和智慧环卫,形成自动驾驶出租车、自动驾驶小巴、自动驾驶货运车、自动驾驶环卫车、高阶智能驾驶等五大产品矩阵,提供网约车、随需公交、同城货运、智能环卫、高阶智能驾驶解决方案等多种服务。 凭借“1个平台+3大场景+5大产品”的多元商业化战略,文远知行商业营收居同类自动驾驶企业之首,已与多家全球顶级主机厂和一级供应商达成战略合作伙伴关系,包括雷诺日产三菱联盟、宇通集团、博世、广汽集团等,不断为人类出行提供更多新选择。 文远知行目前的团队既有来自谷歌、微软、亚马逊、苹果、百度、滴滴的高阶工程师,也不乏刚从顶尖高校毕业的青年才俊。来到我们当中,你会发现这是一个专业、专注、有趣、有料的队伍。大家为了一个激动人心而富有挑战的目标走到一起,互相激励、脑力碰撞,为实现产品落地、创造社会价值、推进行业技术而努力。 对有抱负的工程师,还有什么比这更有意义的呢?我们虚位以待,真诚期待技术过硬、志趣相投的小伙伴加入我们! 更多信息请访问:http://www.weride.ai,或关注官方微信号:文远知行WeRide 关于感知方向 感知是无人驾驶中非常复杂和有趣的部分之一,你构建的是一个人工智能集大成的系统,不是一项按部就班就能完成的工作!感知软件工程师负责无人驾驶感知系统的设计和实现,应对无人驾驶中各种最有挑战的问题: 1. 设计高效可靠的深度学习模型,在几十毫秒内精确检测和跟踪车周围200米之内所有的障碍物(人,车,非机动车辆,交通锥等),并对场景进行理解 2. 如何设计一般性的模型和算法去处理各式各样的长尾情况和极端环境,如路面上的垃圾袋,洒水车的水花,前车掉下来的挡板 ,如大雨,大雪,雾霾,风沙等 3. 如何保证感知模型和算法在极端的环境里的准确性和可靠性,如大雨,大雪,雾霾,风沙等 4. 把模型优化到极致,让十几个到几十个模型在车上有限的计算资源上欢快的运行 5. 如何搭建一个高效可靠的计算框架,支撑一个周期内接收几十个传感器的输入,做各种同步融合,并进行几十个深度学习模型的推理 激光雷达感知算法工程师 - 激光雷达识别和理解复杂环境(检测, 分割) - 负责激光雷达数据采集与数据处理(长尾数据, 长尾场景) - 开发高效离线工具链(C++),包括数据处理,模型训练,测试仿真等

工作职责【负责其中之一的方向即可】 1、【道路几何方向】跟进学界最新主流道路集合感知进展,包括且不限于车道线,停止线,斑马线,Roadmarker, 道路拓扑等方向 2、【Occupancy方向】跟进学界最新主流占据网络感知层面进展,研究基于相机、激光雷达、毫米波雷达等Occupancy感知方案,业界内形成技术领先; 3、【BEV方向】跟进学界主流BEV感知进展,研究基于相机、激光雷达、毫米波雷达等端到端BEV感知方案,业界内形成技术领先; 4、【激光雷达方向】跟进学界主流激光雷达感知进展,研究基于激光雷达的动态&静态障碍物感知技术,业界内形成技术领先;