
文远知行激光雷达感知算法工程师
任职要求
- 有扎实的数学基础 - 熟练掌握C++、PCL库和常用的数据结构与算法 - 熟悉高性能运算加速工具 CUDA - 强烈责任心及良好学习沟通能力,具备较好的团队合作精神 - 点云上有各种奇思妙想, 并付诸实现者加分
工作职责
关于公司 文远知行(WeRide)成立于 2017 年,是全球领先的 L4 级自动驾驶科技公司,致力于“以无人驾驶改变人类出行”,已在全球超过 25 个城市开展自动驾驶研发、测试及运营,累积自动驾驶里程超1600万公里,应用场景覆盖智慧出行、智慧货运和智慧环卫,形成自动驾驶出租车、自动驾驶小巴、自动驾驶货运车、自动驾驶环卫车、高阶智能驾驶等五大产品矩阵,提供网约车、随需公交、同城货运、智能环卫、高阶智能驾驶解决方案等多种服务。 凭借“1个平台+3大场景+5大产品”的多元商业化战略,文远知行商业营收居同类自动驾驶企业之首,已与多家全球顶级主机厂和一级供应商达成战略合作伙伴关系,包括雷诺日产三菱联盟、宇通集团、博世、广汽集团等,不断为人类出行提供更多新选择。 文远知行目前的团队既有来自谷歌、微软、亚马逊、苹果、百度、滴滴的高阶工程师,也不乏刚从顶尖高校毕业的青年才俊。来到我们当中,你会发现这是一个专业、专注、有趣、有料的队伍。大家为了一个激动人心而富有挑战的目标走到一起,互相激励、脑力碰撞,为实现产品落地、创造社会价值、推进行业技术而努力。 对有抱负的工程师,还有什么比这更有意义的呢?我们虚位以待,真诚期待技术过硬、志趣相投的小伙伴加入我们! 更多信息请访问:http://www.weride.ai,或关注官方微信号:文远知行WeRide 关于感知方向 感知是无人驾驶中非常复杂和有趣的部分之一,你构建的是一个人工智能集大成的系统,不是一项按部就班就能完成的工作!感知软件工程师负责无人驾驶感知系统的设计和实现,应对无人驾驶中各种最有挑战的问题: 1. 设计高效可靠的深度学习模型,在几十毫秒内精确检测和跟踪车周围200米之内所有的障碍物(人,车,非机动车辆,交通锥等),并对场景进行理解 2. 如何设计一般性的模型和算法去处理各式各样的长尾情况和极端环境,如路面上的垃圾袋,洒水车的水花,前车掉下来的挡板 ,如大雨,大雪,雾霾,风沙等 3. 如何保证感知模型和算法在极端的环境里的准确性和可靠性,如大雨,大雪,雾霾,风沙等 4. 把模型优化到极致,让十几个到几十个模型在车上有限的计算资源上欢快的运行 5. 如何搭建一个高效可靠的计算框架,支撑一个周期内接收几十个传感器的输入,做各种同步融合,并进行几十个深度学习模型的推理 激光雷达感知算法工程师 - 激光雷达识别和理解复杂环境(检测, 分割) - 负责激光雷达数据采集与数据处理(长尾数据, 长尾场景) - 开发高效离线工具链(C++),包括数据处理,模型训练,测试仿真等

1、目标轨迹预测算法开发: 1-1、基于激光雷达点云数据,结合摄像头、毫米波雷达等多传感器信息,开发动态障碍物(如车辆、行人)的轨迹预测算法,包括短时轨迹预测、行为意图预测,并优化预测模型的准确性与实时性。 1-2、典型任务:长短期记忆网络(LSTM)、Transformer等深度学习模型的改进,融合时序信息与空间特征。 2、多模态数据融合与预测模型构建: 2-1:主导多传感器(激光雷达、摄像头、IMU等)数据的时空对齐与融合,设计联合预测框架,提升复杂场景(如十字路口、拥堵路段)下预测系统的鲁棒性。 2-2:涉及技术:卡尔曼滤波、粒子滤波、贝叶斯网络等。 3、预测算法验证与场景适配:通过仿真工具(如CARLA、LGSVL)和实车测试验证预测算法性能,分析极端场景(如紧急变道、鬼探头)的预测失败案例(badcase),优化模型泛化能力。 4、协同规划与控制模块:将预测结果与自动驾驶决策、路径规划模块深度集成,提供动态障碍物的未来轨迹概率分布,支持车辆避障、跟车等决策逻辑。

工作职责【负责其中之一的方向即可】 1、【道路几何方向】跟进学界最新主流道路集合感知进展,包括且不限于车道线,停止线,斑马线,Roadmarker, 道路拓扑等方向 2、【Occupancy方向】跟进学界最新主流占据网络感知层面进展,研究基于相机、激光雷达、毫米波雷达等Occupancy感知方案,业界内形成技术领先; 3、【BEV方向】跟进学界主流BEV感知进展,研究基于相机、激光雷达、毫米波雷达等端到端BEV感知方案,业界内形成技术领先; 4、【激光雷达方向】跟进学界主流激光雷达感知进展,研究基于激光雷达的动态&静态障碍物感知技术,业界内形成技术领先;
该岗位分3个方向,请同学们仔细阅读岗位JD,选择适合自己的方向进行投递。 【机器人算法工程师】(规划&控制方向) 职位描述: 1、负责机器人运动学、动力学建模,并实现机器人运动或者路径规划,运动控制等算法; 2、有机器人导航, 机械手臂抓取, 液压控制等相关机器人项目经验; 3、对接硬件、产品等职能同事,实现机器人整体功能的实现和调试; 4、负责算法的优化、移植和产品化。 【机器人算法工程师】(感知&建模方向) 职位描述: 1、负责工程机械智能化场景中基于深度学习激光雷达点云的3D目标检测、分割、跟踪等算法的研发及迭代优化; 2、参与工程机械智能化项目中的感知研发,开发并优化适用于复杂工况(如施工场景、恶劣天气条件)的点云处理和感知算法。 3、推动感知算法在工程机械智能化产品中的落地与优化提升,确保算法的高效运行和实时性; 4、结合工程机械的实际需求,对激光雷达点云数据进行预处理、特征提取和分析,为后续的感知任务提供高质量的数据支持; 5、参与多传感器融合算法的研发,探索激光雷达与其他传感器(如摄像头、IMU等)的协同工作模式,提高工程机械的环境感知能力; 6、跟踪和研究点云感知领域的最新技术动态,将其应用到实际项目中,保持公司技术的领先性。 【机器人算法工程师】(具身智能方向) 职位描述: 1、深入研究机器人多模态大模型(VLA模型)的理论及应用,包括预训练、微调策略、以及效果优化; 2、负责基于大模型的决策控制算法设计,探索前沿模仿学习(如 ACT、DP)及 Model-Based RL 算法在机器人上的研究与创新; 3、基于大模型开发创新算法框架,探索具身智能机器人实际场景中的应用方向,如 RT 系列等; 4、负责最新文献调研,跟踪多模态模型与机器人领域结合的技术前沿,提出具有创新性的研究思路; 5、参与并主导自定义数据集构建、特定任务的模型训练与评估; 6、推动具身智能系统算法在复杂场景下的理论研究,探索工程机械场景智能化解决方案。

1、激光雷达感知算法开发与优化。负责自动驾驶场景中激光雷达感知算法的设计、开发和迭代,包括3D目标检测、点云分割、目标跟踪、可行驶区域识别等。需结合深度学习框架(如PyTorch、TensorFlow)优化模型性能,并完成算法上车部署。 2、前沿技术研究与预研。跟踪国际最新研究成果(如PointNet++、PointPillars、CenterPoint等模型),探索无监督/弱监督学习、强化学习等方向在感知领域的应用,推动技术落地。 3、团队管理与跨部门协作。负责技术文档编写、团队任务分配及进度把控,与系统集成、测试、规划模块工程师协作,确保感知算法与整车系统的兼容性和性能优化。 4、数据管理与模型迭代。主导数据标注规则制定、数据挖掘及模型评测,分析badcase并优化算法性能。需熟悉CUDA、TensorRT等加速工具,提升模型在嵌入式平台的运行效率。