
平安科技NLP算法工程师
社招全职计算机网络技术类地点:深圳状态:招聘
任职要求
【语音识别方向】 1、至少在以下领域有过研究或工程经验:文本分类、知识图谱、文本挖掘、文本相似性、命名实体识别、分词、信息检索、Q&A、机器翻译; 3、熟悉常见NLP相关模型,如HMM、EM、LDA等;熟悉深度学习相关技术,如句向量、CNN、RNN、LSTM等模型; 4、熟悉 Java、C/C++、Python其中一种开发语言,有数据结构与算法的基础。 【知识图谱方向】 1、具备机器学习/数据挖掘理论和技术基础; 2、有丰富的中文NLP、QA、知识图谱、事理图谱、机器翻译、阅读理解、信号处理等项目经验,基础扎实,编码能力强; 3、为人踏实靠谱,具备较强的团队协作沟通和领导能力,积极主动,勇于探索新技术。 【对话机器人方向】 1、熟悉NLP、机器学习、模式识别等常用算法,熟悉NLP领域当前热点和前沿技术,熟练掌握C/C++编程语言和Python,Shell等脚本语言; 2、有相关项目经历,包文本分类、信息抽取、知识图谱、机器学习、自动摘要等,有深度学习背景最佳; 3、较强的分析解决问题能力、沟通表达和团队协作。
工作职责
【语音识别方向】 1、 参与平安业务相关的文本分类、命名实体识别,文本相似性,语言模型,情感分析,用户行为分析等相关NLP工作; 2、 跟进NLP领域前沿技术,对现有产品和技术方案进行持续改进,同时探讨和开发新的产品。 【知识图谱方向】 1、负责大规模文本信息挖掘和分类、语义理解、智能问答、信息提取等,并应用于实际场景; 2、负责金融、法律等领域知识图谱以及事理图谱的构建; 3、探索业界前沿方法,并提升现有NLP能力。 【对话机器人方向】 1、基于机器学习, 并结合现有的自然语言处理技术,研发文本近似、信息抽取、关系推断、阅读理解、智能聊天机器人等的解决方案; 2、实现产品解决方案,进行效果调优; 3、发布相关产品,不断迭代产品效果。
包括英文材料
语音识别+
https://www.youtube.com/watch?v=mYUyaKmvu6Y
Learn how to implement speech recognition in Python by building five projects.
https://www.youtube.com/watch?v=sR6_bZ6VkAg
How Rev.com harnesses human-in-the-loop and deep learning to build the world's best English speech recognition engine
信息检索+
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
CNN+
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
Convolutional Neural Network (CNN) forms the basis of computer vision and image processing.
[英文] CNN Explainer
https://poloclub.github.io/cnn-explainer/
Learn Convolutional Neural Network (CNN) in your browser!
https://www.deeplearningbook.org/contents/convnets.html
Convolutional networks(LeCun, 1989), also known as convolutional neuralnetworks, or CNNs, are a specialized kind of neural network for processing data.
https://www.youtube.com/watch?v=2xqkSUhmmXU
MIT Introduction to Deep Learning 6.S191: Lecture 3 Convolutional Neural Networks for Computer Vision
RNN+
https://d2l.ai/chapter_recurrent-neural-networks/rnn.html
A neural network that uses recurrent computation for hidden states is called a recurrent neural network (RNN).
https://www.deeplearningbook.org/contents/rnn.html
Recurrent neural networks, or RNNs (Rumelhart et al., 1986a), are a family of neural networks for processing sequential data.
https://www.ibm.com/think/topics/recurrent-neural-networks
A recurrent neural network or RNN is a deep neural network trained on sequential or time series data to create a machine learning (ML) model that can make sequential predictions or conclusions based on sequential inputs.
LSTM+
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Humans don’t start their thinking from scratch every second.
https://d2l.ai/chapter_recurrent-modern/lstm.html
The term “long short-term memory” comes from the following intuition.
https://developer.nvidia.com/discover/lstm
A Long short-term memory (LSTM) is a type of Recurrent Neural Network specially designed to prevent the neural network output for a given input from either decaying or exploding as it cycles through the feedback loops.
https://www.youtube.com/watch?v=YCzL96nL7j0
Basic recurrent neural networks are great, because they can handle different amounts of sequential data, but even relatively small sequences of data can make them difficult to train.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
质量保证+
https://roadmap.sh/qa
Steps to follow in order to become a modern QA Engineer
https://www.youtube.com/watch?v=AKLuQaPWcdg
Learn Testing And Quality Assurance Complete Course
模式识别+
https://www.mathworks.com/discovery/pattern-recognition.html
Pattern recognition is the process of classifying input data into objects, classes, or categories using computer algorithms based on key features or regularities.
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science.
Bash+
[英文] The Bash Guide
https://guide.bash.academy/
A quality-driven guide through the shell's many features.
https://www.youtube.com/watch?v=tK9Oc6AEnR4
Understanding how to use bash scripting will enhance your productivity by automating tasks, streamlining processes, and making your workflow more efficient.
脚本+
[英文] Scripting language
https://en.wikipedia.org/wiki/Scripting_language
https://zhuanlan.zhihu.com/p/571097954
一个脚本通常是解释执行而非编译。脚本语言通常都有简单、易学、易用的特性,目的就是希望能让程序员快速完成程序的编写工作。
相关职位
实习HARDWARE
1. 负责语料库的构建, 包括数据的收集,清洗去重和标注。 2. 负责相关工具以及脚本的开发; 3. 负责语言模型的训练, 微调和优化; 4. 负责技术文档编写以及方案平复。
更新于 2025-05-20
社招3-5年研发类
一、 1、负责互联网内容理解算法开发及相关技术难点攻克,推动多模态内容理解算法和深度学习在互联网应用场景(短视频、图文信息流、广告、游戏等)的落地; 2、负责文案、图片、视频自动化生成相关的研发工作,基于素材创作、投放数据,优化创意文案、视频、图片等物料的智能生成策略的算法实现。 二、
校招J1003
1、负责知识体系、对话系统、机器翻译的研发、实现和优化,用户搜索意图理解,实体NER,搜索语言模型,纠错改写,搜索需求图谱,搜索交互引导,智能对话等方向; 2、负责文本分类、语义理解、情感分析等NLP任务的研发工作; 3、负责智能客服、文本安全、短视频搜索等多个业务领域的内容挖掘、用户标签构建、知识图谱构建等; 4、负责NLP算法系统的开发和优化。
更新于 2025-08-19