
商汤MIG-算法研究工程师
社招全职算法工程地点:北京 | 上海 | 深圳状态:招聘
任职要求
1. 扎实的计算机视觉基础,熟悉主流 CV 模型(如分类、检测、分割、OCR、多模态等)的原理与实现。 2. 熟悉大模型(LLM、VLM)原理与部署,有轻量化与推理加速经验者优先。 3. 精通 Python、C++,熟悉深度学习框架(PyTorch、TensorFlow、ONNX Runtime 等)。 4. 有端侧芯片(如 Qualcomm、MTK、海思、地平线、寒武纪、NVIDIA Jetson、RK 等)部署经验,熟悉其 SDK/推理引擎。 5. 熟悉模型压缩(量化、剪枝、蒸馏)、算子优化、混合精度训练与推理等技术。 6. 较强的分析与解决问题能力,能够独立定位端侧性能瓶颈并提出优化方案。 7. 良好的团队合作与沟通能力,能够在多部门协作环境中高效推进项目。 加分项: • 熟悉 ARM 架构优化、SIMD/NEON 指令集或 CUDA/OpenCL 编程。 • 有多平台(Android/Linux/RTOS)部署与调试经验。 • 熟悉机器学习编译框架(如 TVM、TensorRT、OpenVINO、AITemplate 等),有过模型编译与优化的经验。 • 熟悉边缘计算系统(如多摄像头、多传感器融合)的工程实现。 • 有真实商业化落地案例(如摄像头、机器人、可穿戴设备、车载系统等)。 • 对低功耗设计、内存优化有实战经验。
工作职责
1. 负责端侧AI 模型的优化、部署与性能调优,包括但不限于计算机视觉模型与大模型(LLM、VLM等)。 2. 基于不同端侧芯片(NPU、GPU、DSP、FPGA 等)进行模型适配和部署,实现高性能、低功耗推理。 3. 研究与实现模型压缩、量化、剪枝、蒸馏等技术,提高模型在端侧的运行效率与内存利用率。 4. 跟踪前沿算法与端侧硬件技术发展,探索新型架构与优化方法。 5. 与算法、芯片、软件团队紧密协作,完成从模型训练到端侧落地的全链路优化。
包括英文材料
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
OCR+
https://www.ibm.com/think/topics/optical-character-recognition
Optical character recognition (OCR) is a technology that uses automated data extraction to quickly convert images of text into a machine-readable format.
https://www.youtube.com/watch?v=or8AcS6y1xg
Optical character recognition (OCR) is sometimes referred to as text recognition.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
ONNX+
https://github.com/onnx/tutorials
Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models.
[英文] Introduction to ONNX
https://onnx.ai/onnx/intro/
This documentation describes the ONNX concepts (Open Neural Network Exchange).
Jetson+
https://developer.nvidia.com/embedded/learn/getting-started-jetson
NVIDIA Jetson developer kits enable developers to create AI-powered applications and robotics projects.
https://www.youtube.com/watch?v=-PjMC0gyH9s
In this video, we provide the most comprehensive setup guide for the NVIDIA Jetson Orin Nano, covering everything you need to get started with this all-in-one generative AI powerhouse.
SDK+
https://www.ibm.com/think/topics/api-vs-sdk
Learn about software development kits (SDKs) and application programming interfaces (APIs) and how they improve both software development cycles and the end-user experience (UX).
https://www.redhat.com/zh-cn/topics/cloud-native-apps/what-is-SDK
软件开发套件(SDK)是通常由硬件平台、操作系统(OS)或编程语言的制造商提供的一套工具。
推理引擎+
https://www.youtube.com/watch?v=_dvk75LEJ34
https://www.youtube.com/watch?v=XtT5i0ZeHHE
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
OpenCL+
https://developer.nvidia.com/opencl
OpenCL™ (Open Computing Language) is a low-level API for heterogeneous computing that runs on CUDA-powered GPUs.
https://engineering.purdue.edu/~smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod20OpenCL/3rd-Edition-AppendixA-intro-to-OpenCL.pdf
we will give a brief overview of OpenCL for CUDA programers.
[英文] Hands On OpenCL
https://handsonopencl.github.io/
An open source two-day lecture course for teaching and learning OpenCL
https://leonardoaraujosantos.gitbook.io/opencl/chapter1
Open Computing Language is a framework for writing programs that execute across heterogeneous platforms.
https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/opencl/
OpenCL came as a standard for heterogeneous programming that enables a code to run in different platforms.
https://www.youtube.com/watch?v=4q9fPOI-x80
This presentation will show how to make use of the GPU from Java using OpenCL.
Android+
https://roadmap.sh/android
Step by step guide to becoming an Android developer .
https://www.youtube.com/playlist?list=PLQkwcJG4YTCSVDhww92llY3CAnc_vUhsm
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
RTOS+
[英文] RTOS Fundamentals
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/01-RTOS-fundamentals
A Real-Time Operating System (RTOS) is a type of computer operating system designed to be small and deterministic.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
相关职位

社招算法研究
1. 负责大语言模型、多模态大模型(文本、图像、语音等)的核心算法研发,包括模型 SFT微调、强化学习后训练、推理优化等关键环节,持续提升模型的效果、效率与稳定性。 2. 跟踪国内外大模型领域的前沿技术(如 Transformer 架构改进、多模态融合技术等),并结合业务场景进行技术调研与创新落地。 3. 针对具体业务需求(如智能客服、内容生成、代码辅助等),设计训练数据处理与清洗、大模型微调、强化学习后训练方案,解决实际业务问题。 4. 通用智能体框架设计与开发,智能体虚拟环境搭建,智能体基座模型的SFT后训练和强化学习后训练。 5. 与工程开发、产品设计等团队紧密协作,推动大模型技术从研发到产品化的全流程落地,输出技术文档与方案说明。
更新于 2025-09-24

社招算法研究
1、负责研究图像处理的前沿算法及实现,涵盖的课题包括但不限于:多帧融合、降噪、暗光增强、去模糊、HDR、超分辨率、Diffusion和GAN图像生成等。 2、负责画质类算法的开发、调优与部署。 3、针对实际的画质问题,进行算法方案设计,并实现和验证。
更新于 2025-06-13

社招算法研究
1. 深度探索AI以及视觉前沿算法,实现其在移动端的落地,确保算法在实际应用场景中的卓越表现。 2. 算法包括,检测识别跟踪,姿态估计,分割,深度估计,多帧融合、降噪、暗光增强、去模糊、HDR、超分辨率、GAN 图像生成,大语言模型和Diffusion图像视频生成技术。 3. 针对项目中出现的问题,精准设计算法解决方案,严谨地进行实现与验证,快速迭代并完成量产。 4. 承担AI算法的研发任务,包括但不限于算法的创新、改进与优化,以满足不同业务场景的需求。
更新于 2025-06-13