
商汤大模型应用工程师
社招全职1年以上系统研究地点:北京状态:招聘
任职要求
任职要求: 1.具有计算机科学、机器学习和人工智能等相关行业从业经历或具有相关专业硕士以上学历; 2.熟悉大语言模型工作原理,对agent架构设计与优化有实践经验,包括任务分解、工具调用、上下文传递与反馈优化; 3.理解并能应用 MCP,有过协议对接或扩展经验优先; 4.精通Prompt设计与上下文管理技巧,能够针对不同任务需求进行定制化优化; 5.具备扎实的计算编程功底,熟练使用python/go等至少一种编程语言,有大模型相关开发经验; 6.对大语言模型、新兴技术有好奇心,学习能力强有创新能力; 7.具备敏锐的业务和数据问题发现能力,以及优秀的分析和解决问题能力。 加分项 1.有Agent框架开发经验(如 LangGraph、Ollama Agents、自研框架)。 2.对上下文压缩、长期记忆、检索增强生成(RAG)有研究或实践。 3.熟悉机器学习及大模型相关算法原理、训练方法及数据挖掘方法,有一年以上大模型相关从业经验。
工作职责
1.参与ai agent产品开发,设计Agent的工作流程和模型之间的交互过程,包括任务规划、工具调用、记忆与上下文管理策略; 2.设计历史记录管理,长期记忆,用户画像体系,长文本知识检索等模块,提升用户体验; 3.构建体系化的上下文工程,沉淀可复用的上下文模板与评测标准; 4.调研、跟踪和使用业界最新的框架和工具,并能在实际业务中落地。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
学历+
AI agent+
https://www.ibm.com/think/ai-agents
Your one-stop resource for gaining in-depth knowledge and hands-on applications of AI agents.
系统设计+
https://roadmap.sh/system-design
Everything you need to know about designing large scale systems.
https://www.youtube.com/watch?v=F2FmTdLtb_4
This complete system design tutorial covers scalability, reliability, data handling, and high-level architecture with clear explanations, real-world examples, and practical strategies.
MCP+
https://www.youtube.com/watch?v=eur8dUO9mvE
Unlock the secrets of MCP! 🚀 Dive into the world of Model Context Protocol and learn how to seamlessly connect AI agents to databases, APIs, and more. Roy Derks breaks down its components, from hosts to servers, and showcases real-world applications. Gain the knowledge to revolutionize your AI projects!
https://www.youtube.com/watch?v=L94WBLL0KjY
Let's talk about MCP or the Model Context Protocol.
Prompt+
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
A prompt is a natural language request submitted to a language model to receive a response back.
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/prompt-engineering
These techniques aren't recommended for reasoning models like gpt-5 and o-series models.
https://www.youtube.com/watch?v=LWiMwhDZ9as
Learn and master the fundamentals of Prompt Engineering and LLMs with this 5-HOUR Prompt Engineering Crash Course!
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Go+
https://www.youtube.com/watch?v=8uiZC0l4Ajw
学习Golang的完整教程!从开始到结束不到一个小时,包括如何在Go中构建API的完整演示。没有多余的内容,只有你需要知道的知识。
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Ollama+
https://www.youtube.com/watch?v=GWB9ApTPTv4
Learn how to set up and use Ollama to build powerful AI applications locally.
https://www.youtube.com/watch?v=UtSSMs6ObqY
In this short video, I'll teach you everything you need to know to get up and running with Ollama.
RAG+
https://www.youtube.com/watch?v=sVcwVQRHIc8
Learn how to implement RAG (Retrieval Augmented Generation) from scratch, straight from a LangChain software engineer.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
相关职位
社招技术类
岗位职责: 1、参与构建LLM在垂直领域的创新应用,设计并落地AI Agent、RAG等解决方案,推动业务场景智能化升级 2、跟踪国际前沿技术动态,通过技术预研和原型验证,持续探索大模型技术的突破性应用方向 3、跨部门协同多团队,制定端到端的大模型应用落地路径,平衡技术先进性与工程可行性
更新于 2025-08-12
校招A83041
团队介绍:字节跳动技术风险团队,提供变更、资金、运维、蓝军等技术风险领域的基建能力,支撑公司数十条业务线的稳定性建设。同时也在积极探索利用大模型技术,在技术风险领域对基建能力做持续的优化和提升,包括智能化资金核对、发布过程的智能检测等。 1、探索大模型技术在技术风险领域中的落地应用,提供基于大模型的智能交互、根因定位和异常检测等服务; 2、搭建大模型应用的框架,融入技术风险平台,为研发效率提升提供智能服务; 3、持续跟进大模型前沿技术、开源方案及其在技术风险领域的应用。
更新于 2025-08-01
社招技术类
1. 负责生成式语言模型应用的设计,开发,和落地,为用户使用场景提供更好的体验。 2. 在已部署的大模型服务中,调研不同模型与架构对服务指标的影响。 3. 结合提示词工程 (prompt engineering),模型微调 (supervised/parameter efficient fine-tuning),函数调用 (function calling),配合向量数据库的检索增强生成 (RAG)等大模型技术,研发关键功能,实现稳定,可复现的模型产出。 4. 跟进业界的最新产出结果,根据业务需求,为团队调研引入新的大模型应用场景。
更新于 2025-09-15