理想汽车智能空调算法工程师-北京
校招全职热管理地点:上海状态:招聘
任职要求
1. 硕士及以上学历,计算机科学与技术,自动化,人工智能,电气工程及其自动化、自动化、电力电子类相关专业; 2. 熟悉常见的机器学习算法(如回归、决策树、聚类、SVM)和深度学习架构(如CNN、RNN、Transformer等); 3. 熟悉Python,对AI开发常用的库和框架如TensorFlow、PyTorch、Scikit-learn、Keras等有深入理解和实践经验; 4. 具备良好的数据处理技能,能够使用Pandas、NumPy等工具进行数据清洗、特征工程、数据可视化等操作; 5. 了解AI模型的部署流程,熟悉常用的云服务和容器化技术(如Docker、Kubernetes); 6. 熟练掌握计算机及基本办公软件使用技能,具备良好的文档组织能力; 7. 善于交流沟通,具有良好的团队意识和沟通协调能力,具备抗压能力,追求卓越。
工作职责
1. 负责空调热管理智能算法的需求分析; 2. 负责空调热管理智能算法模型开发; 3. 负责空调热管理智能算法仿真环境搭建与维护; 4. 负责空调热管理智能算法集成落地; 5. 负责空调热管理大数据挖掘分析、优化算法; 6. 负责空调热管理算法问题跟踪、分析和解决。
包括英文材料
学历+
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
CNN+
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
Convolutional Neural Network (CNN) forms the basis of computer vision and image processing.
[英文] CNN Explainer
https://poloclub.github.io/cnn-explainer/
Learn Convolutional Neural Network (CNN) in your browser!
https://www.deeplearningbook.org/contents/convnets.html
Convolutional networks(LeCun, 1989), also known as convolutional neuralnetworks, or CNNs, are a specialized kind of neural network for processing data.
https://www.youtube.com/watch?v=2xqkSUhmmXU
MIT Introduction to Deep Learning 6.S191: Lecture 3 Convolutional Neural Networks for Computer Vision
RNN+
https://d2l.ai/chapter_recurrent-neural-networks/rnn.html
A neural network that uses recurrent computation for hidden states is called a recurrent neural network (RNN).
https://www.deeplearningbook.org/contents/rnn.html
Recurrent neural networks, or RNNs (Rumelhart et al., 1986a), are a family of neural networks for processing sequential data.
https://www.ibm.com/think/topics/recurrent-neural-networks
A recurrent neural network or RNN is a deep neural network trained on sequential or time series data to create a machine learning (ML) model that can make sequential predictions or conclusions based on sequential inputs.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
Scikit-learn+
https://www.ibm.com/think/topics/scikit-learn
Scikit-learn, or sklearn, is an open source project and one of the most used machine learning (ML) libraries today.
https://www.youtube.com/watch?v=SIEaLBXr0rk
Today we to a crash course on Scikit-Learn, the go-to library in Python when it comes to traditional machine learning algorithms (i.e., not deep learning).
Keras+
https://keras.io/getting_started/intro_to_keras_for_engineers/
Keras 3 is a deep learning framework works with TensorFlow, JAX, and PyTorch interchangeably.
Pandas+
[英文] 10 minutes to pandas
https://pandas.pydata.org/docs/user_guide/10min.html
This is a short introduction to pandas, geared mainly for new users.
[英文] Cookbook - pandas
https://pandas.pydata.org/docs/user_guide/cookbook.html#cookbook
This is a repository for short and sweet examples and links for useful pandas recipes.
https://www.kaggle.com/learn/pandas
Solve short hands-on challenges to perfect your data manipulation skills.
https://www.youtube.com/watch?v=2uvysYbKdjM
I'm super excited for this one. We're doing another complete Python Pandas tutorial walkthrough.
https://www.youtube.com/watch?v=Mdq1WWSdUtw
Filtering, Joins, Indexing, Data Cleaning, Visualizations
NumPy+
https://numpy.org/doc/stable/user/absolute_beginners.html
NumPy (Numerical Python) is an open source Python library that’s widely used in science and engineering.
[英文] NumPy - Learn
https://numpy.org/learn/
Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
https://www.kaggle.com/code/themlphdstudent/learn-numpy-numpy-50-exercises-and-solution
This kernel uses exercises of NumPy from the Machine Learning Plus webpage
https://www.youtube.com/watch?v=KHoEbRH46Zk
If you've heard of Pandas and NumPy, you may think one is simply a superset of the other.
https://www.youtube.com/watch?v=QUT1VHiLmmI
Learn the basics of the NumPy library in this tutorial for beginners.
https://www.youtube.com/watch?v=VXU4LSAQDSc
This video serves as an introduction to the NumPy Python library.
特征工程+
https://www.ibm.com/think/topics/feature-engineering
Feature engineering preprocesses raw data into a machine-readable format. It optimizes ML model performance by transforming and selecting relevant features.
https://www.kaggle.com/learn/feature-engineering
Better features make better models. Discover how to get the most out of your data.
Docker+
https://www.youtube.com/watch?v=GFgJkfScVNU
Master Docker in one course; learn about images and containers on Docker Hub, running multiple containers with Docker Compose, automating workflows with Docker Compose Watch, and much more. 🐳
https://www.youtube.com/watch?v=kTp5xUtcalw
Learn how to use Docker and Kubernetes in this complete hand-on course for beginners.
Kubernetes+
https://kubernetes.io/docs/tutorials/kubernetes-basics/
This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration system.
https://kubernetes.io/zh-cn/docs/tutorials/kubernetes-basics/
本教程介绍 Kubernetes 集群编排系统的基础知识。每个模块包含关于 Kubernetes 主要特性和概念的一些背景信息,还包括一个在线教程供你学习。
https://www.youtube.com/watch?v=s_o8dwzRlu4
Hands-On Kubernetes Tutorial | Learn Kubernetes in 1 Hour - Kubernetes Course for Beginners
https://www.youtube.com/watch?v=X48VuDVv0do
Full Kubernetes Tutorial | Kubernetes Course | Hands-on course with a lot of demos
相关职位
社招6年以上汽车研发
1. 根据整车空调热管理系统的功能与性能需求编制系统功能规范(电器原理图,引脚信号定义、通信信号定义、电气类产品规范参数); 2. 负责空调热管理系统控制软件功能算法、策略、功能需求定义开发; 3. 负责空调热管理系统软件设计说明文档功能校对; 4. 负责空调热管理系统诊断规范编写; 5. 负责空调热管理系统的各类问题跟踪、分析和解决; 6. 负责空调热管理系统大数据挖掘、分析工作,优化系统功性能表现; 7. 负责空调热管理系统的软件设计开发计划,并推动实施; 8. 负责收集空调热管理个性化、智能化前沿技术追踪、新技术开发; 9. 负责与整车各需求相关部门进行系统需求的沟通协调; 10. 该岗位可base北京/上海。
社招5年以上智能与信息技术
1.针对车控域(智能能源、运动、空调、车身等)面临的问题,从AI角度提出解决方案 2.负责数据驱动智能化应用的设计、可行性验证、建模和开发; 3.主导整车控制领域人工智能前沿技术的感知和研究;
社招3-8年A122278
1. 负责小米汽车移动端应用的软件研发工作,包括座舱车机上的车辆控制、驾驶控制、空调座椅、仪表HUD、场景空间和基础应用(电话/天气等)等; 2. 充分理解需求并根据需求完成软件架构、模块设计和开发工作; 3. 按照项目计划,按时提交高质量的代码,完成开发任务; 4. 改善软件的易用性,提升用户使用体验; 5. 积极研究新技术、功能扩展,以及现有开发方法的改进。
更新于 2025-09-03