logo of liauto

理想汽车【企业智能】AI Coding 应用开发工程师

校招全职算法与软件地点:北京状态:招聘

任职要求


1. 学历专业:硕士及以上学历,计算机科学、软件工程、人工智能等相关专业(特别优秀的本科生亦可考虑);
2. 技术热情:对 AI 大模型在软件开发的应用有浓厚兴趣,了解 Copilot、Cursor、ClaudeCode 等主流 AI 编码工具;
3. 编程能力:熟练掌握至少一种主流编程语言(Python / JavaScript / TypeScript / Go 等),熟悉常见开发框架与工具链;
4. AI 应用研发经验:具备大模型 API 调用与二次开发经验;有智能体开发经验者优先;
5. 工程能力:具备一定的系统设计与工程落地能力,能独立完成从原型到上线的研发闭环;
6. 快速学习能力:能够高效学习新的大模型工具、框架与应用方式,并将其融入开发流程;
7. 协作沟通:具备良好的团队合作精神和跨部门沟通能力,能与产品、算法、后端紧密配合完成项目目标。

工作职责


1. 参与 AI 大模型在软件研发领域的应用开发,包括智能代码生成、AI Code Review、调试优化、自动化测试等场景的研发与落地;
2. 参与 AI 智能体系统的设计与实现,包括多工具调用、多 Agent 协作等能力构建;
3. 调研和分析开源/闭源软件工具及代码库,快速提炼核心实现方案并应用到团队项目;
4. 与产品经理、算法工程师、前后端开发配合,实现从原型到上线的完整开发流程;
5. 编写和维护技术文档、开发手册,推动团队内技术知识沉淀与复用;
6. 持续关注 AI 编码、智能体框架的最新进展,将新技术引入实际业务场景。
包括英文材料
学历+
大模型+
Python+
JavaScript+
TypeScript+
Go+
开发框架+
智能体+
系统设计+
算法+
相关职位

logo of meituan
社招5年以上核心本地商业-基

1.业务交付:负责美团采购、法务系统建设,进行需求分析、系统设计、功能开发、项目推动,保障业务需求的按时交付; 2.架构治理:通过合理架构、设计模式、代码结构、建模等技术手段,持续建设可扩展可持续迭代的业务系统; 3.质量保障:负责相关系统的稳定性保障,为客户和上下游系统提供稳定可靠的服务能力; 4.团队建设:指导初级工程师,促进团队共同成长;技术影响力输出,打造团队品牌文化; 5.AI探索:深度参与采购、法务场景的智能化升级改造,探索AI技术在业务场景中的创新应用,提升用户效率和体验

更新于 2025-07-24
logo of bytedance
校招A250147

团队介绍:AI Coding团队致力于探索LLM在软件开发全生命周期的应用,支持MarsCode、Trae等代码智能产品中代码补全、智能编辑、程序debug以及代码修复等核心AI功能的全链路模型优化。欢迎对大模型、Agent技术和开发者工具体系感兴趣、对技术有追求的同学加入,共同成长! 课题介绍: 一、课题背景与研究动机 1、复杂软件工程项目的挑战与需求:随着企业业务需求的快速增长,软件项目规模持续扩大,系统架构日趋复杂,跨语言、多框架、多平台开发成为常态。开发团队在应对代码理解、跨模块协作、版本演化和长期维护等问题时,效率与质量面临双重挑战; 2、大模型在编程领域的潜力与不足:大规模语言模型在代码生成、补全和文档生成等任务上已展现强大能力,推动了智能化开发工具的初步落地。然而,在应对复杂软件工程项目时,现有模型在长序列建模、上下文一致性、跨文件依赖理解及代码质量保障方面仍有明显不足; 3、技术与产业机遇:1)范式变革:大模型有望成为软件开发全流程的重要参与者,推动从工具辅助向智能协作转变,覆盖从需求分析到代码实现、测试生成和自动化重构的各个环节;2)行业转型:通过深度优化大模型在复杂软件开发中的能力,可显著提升企业研发效率、软件质量与团队协作能力,助力数字化转型; 二、研究目标与创新价值 1、研究目标 1)提升大模型对复杂项目的语义理解与跨模块上下文建模能力,尤其是在长序列代码、跨文件依赖和复杂逻辑推理场景中的表现; 2)优化模型微调与自适应学习策略,通过引入多任务学习、强化学习(RL)和领域知识增强,构建具有高泛化能力和行业适配能力的大模型; 3)集成领域知识库与检索增强(RAG)技术,确保模型生成结果在行业标准、安全规范和合规性方面的准确性与可靠性; 4)构建自我进化的 AI Coding多智能体系统,基于强化学习、长期记忆、垂类模型训练、测试时计算等方法,持续优化任务规划、代码生成等能力,实现数据驱动的自我进化,从而实现复杂应用的端到端全栈开发; 2、创新价值 1)模型结构与预训练策略的突破:在通用预训练模型基础上,结合程序分析与语法语义建模,提升对大型软件项目的理解能力,尤其是在模块间交互和函数调用路径分析方面; 2)模型优化与自适应增强:通过多维度监督信号(代码质量、运行性能、测试覆盖率等),实现强化学习与在线反馈的动态调整,打造具备持续学习能力的大模型; 3)从工具辅助到全生命周期协作:以大模型为核心,推动需求到实现、测试到部署的智能化协作新范式,助力开发者在复杂工程项目中更高效地完成跨团队协作与长期维护; 4)领域知识与行业专属能力融入:通过引入行业领域知识库(如金融合规、医疗数据安全规范等),结合检索增强技术(RAG),确保生成代码符合行业标准,显著降低错误和安全隐患; 三、主要挑战与应用前景 1、长序列代码与复杂上下文建模:复杂软件项目中,代码文件可能达到数千行,存在跨模块调用和多层次依赖,模型如何在长序列输入下保持上下文一致性,是核心技术难点之一; 2、跨语言与多框架适配:现有模型大多针对单一语言优化,而企业项目往往涉及多语言(如 Python、C++、Java 等)和多框架(如 React、Django、Kubernetes)。如何提升模型的跨语言泛化能力成为重要课题; 3、领域知识缺失与安全合规风险:通用大模型缺乏行业特定知识,可能生成不符合行业规范或存在潜在漏洞的代码,需引入领域知识与合规规则进行优化和增强; 4、人机协作:针对新涌现的大模型技术和应用场景,研究下一代软件研发人机交互形式,推动AI驱动的交互形式的普及与发展。

更新于 2025-05-16
logo of bytedance
校招A103933B

团队介绍:AI Coding团队致力于探索LLM在软件开发全生命周期的应用,支持MarsCode、Trae等代码智能产品中代码补全、智能编辑、程序debug以及代码修复等核心AI功能的全链路模型优化。欢迎对大模型、Agent技术和开发者工具体系感兴趣、对技术有追求的同学加入,共同成长! 课题介绍: 一、课题背景与研究动机 1、复杂软件工程项目的挑战与需求:随着企业业务需求的快速增长,软件项目规模持续扩大,系统架构日趋复杂,跨语言、多框架、多平台开发成为常态。开发团队在应对代码理解、跨模块协作、版本演化和长期维护等问题时,效率与质量面临双重挑战; 2、大模型在编程领域的潜力与不足:大规模语言模型在代码生成、补全和文档生成等任务上已展现强大能力,推动了智能化开发工具的初步落地。然而,在应对复杂软件工程项目时,现有模型在长序列建模、上下文一致性、跨文件依赖理解及代码质量保障方面仍有明显不足; 3、技术与产业机遇:1)范式变革:大模型有望成为软件开发全流程的重要参与者,推动从工具辅助向智能协作转变,覆盖从需求分析到代码实现、测试生成和自动化重构的各个环节;2)行业转型:通过深度优化大模型在复杂软件开发中的能力,可显著提升企业研发效率、软件质量与团队协作能力,助力数字化转型; 二、研究目标与创新价值 1、研究目标 1)提升大模型对复杂项目的语义理解与跨模块上下文建模能力,尤其是在长序列代码、跨文件依赖和复杂逻辑推理场景中的表现; 2)优化模型微调与自适应学习策略,通过引入多任务学习、强化学习(RL)和领域知识增强,构建具有高泛化能力和行业适配能力的大模型; 3)集成领域知识库与检索增强(RAG)技术,确保模型生成结果在行业标准、安全规范和合规性方面的准确性与可靠性; 4)构建自我进化的 AI Coding多智能体系统,基于强化学习、长期记忆、垂类模型训练、测试时计算等方法,持续优化任务规划、代码生成等能力,实现数据驱动的自我进化,从而实现复杂应用的端到端全栈开发; 2、创新价值 1)模型结构与预训练策略的突破:在通用预训练模型基础上,结合程序分析与语法语义建模,提升对大型软件项目的理解能力,尤其是在模块间交互和函数调用路径分析方面; 2)模型优化与自适应增强:通过多维度监督信号(代码质量、运行性能、测试覆盖率等),实现强化学习与在线反馈的动态调整,打造具备持续学习能力的大模型; 3)从工具辅助到全生命周期协作:以大模型为核心,推动需求到实现、测试到部署的智能化协作新范式,助力开发者在复杂工程项目中更高效地完成跨团队协作与长期维护; 4)领域知识与行业专属能力融入:通过引入行业领域知识库(如金融合规、医疗数据安全规范等),结合检索增强技术(RAG),确保生成代码符合行业标准,显著降低错误和安全隐患; 三、主要挑战与应用前景 1、长序列代码与复杂上下文建模:复杂软件项目中,代码文件可能达到数千行,存在跨模块调用和多层次依赖,模型如何在长序列输入下保持上下文一致性,是核心技术难点之一; 2、跨语言与多框架适配:现有模型大多针对单一语言优化,而企业项目往往涉及多语言(如 Python、C++、Java 等)和多框架(如 React、Django、Kubernetes)。如何提升模型的跨语言泛化能力成为重要课题; 3、领域知识缺失与安全合规风险:通用大模型缺乏行业特定知识,可能生成不符合行业规范或存在潜在漏洞的代码,需引入领域知识与合规规则进行优化和增强; 4、人机协作:针对新涌现的大模型技术和应用场景,研究下一代软件研发人机交互形式,推动AI驱动的交互形式的普及与发展。

更新于 2025-05-16
logo of bytedance
校招A155772

团队介绍:AI Coding团队致力于探索LLM在软件开发全生命周期的应用,支持MarsCode、Trae等代码智能产品中代码补全、智能编辑、程序debug以及代码修复等核心AI功能的全链路模型优化。欢迎对大模型、Agent技术和开发者工具体系感兴趣、对技术有追求的同学加入,共同成长! 课题介绍: 一、课题背景与研究动机 1、复杂软件工程项目的挑战与需求:随着企业业务需求的快速增长,软件项目规模持续扩大,系统架构日趋复杂,跨语言、多框架、多平台开发成为常态。开发团队在应对代码理解、跨模块协作、版本演化和长期维护等问题时,效率与质量面临双重挑战; 2、大模型在编程领域的潜力与不足:大规模语言模型在代码生成、补全和文档生成等任务上已展现强大能力,推动了智能化开发工具的初步落地。然而,在应对复杂软件工程项目时,现有模型在长序列建模、上下文一致性、跨文件依赖理解及代码质量保障方面仍有明显不足; 3、技术与产业机遇:1)范式变革:大模型有望成为软件开发全流程的重要参与者,推动从工具辅助向智能协作转变,覆盖从需求分析到代码实现、测试生成和自动化重构的各个环节;2)行业转型:通过深度优化大模型在复杂软件开发中的能力,可显著提升企业研发效率、软件质量与团队协作能力,助力数字化转型; 二、研究目标与创新价值 1、研究目标 1)提升大模型对复杂项目的语义理解与跨模块上下文建模能力,尤其是在长序列代码、跨文件依赖和复杂逻辑推理场景中的表现; 2)优化模型微调与自适应学习策略,通过引入多任务学习、强化学习(RL)和领域知识增强,构建具有高泛化能力和行业适配能力的大模型; 3)集成领域知识库与检索增强(RAG)技术,确保模型生成结果在行业标准、安全规范和合规性方面的准确性与可靠性; 4)构建自我进化的 AI Coding多智能体系统,基于强化学习、长期记忆、垂类模型训练、测试时计算等方法,持续优化任务规划、代码生成等能力,实现数据驱动的自我进化,从而实现复杂应用的端到端全栈开发; 2、创新价值 1)模型结构与预训练策略的突破:在通用预训练模型基础上,结合程序分析与语法语义建模,提升对大型软件项目的理解能力,尤其是在模块间交互和函数调用路径分析方面; 2)模型优化与自适应增强:通过多维度监督信号(代码质量、运行性能、测试覆盖率等),实现强化学习与在线反馈的动态调整,打造具备持续学习能力的大模型; 3)从工具辅助到全生命周期协作:以大模型为核心,推动需求到实现、测试到部署的智能化协作新范式,助力开发者在复杂工程项目中更高效地完成跨团队协作与长期维护; 4)领域知识与行业专属能力融入:通过引入行业领域知识库(如金融合规、医疗数据安全规范等),结合检索增强技术(RAG),确保生成代码符合行业标准,显著降低错误和安全隐患; 三、主要挑战与应用前景 1、长序列代码与复杂上下文建模:复杂软件项目中,代码文件可能达到数千行,存在跨模块调用和多层次依赖,模型如何在长序列输入下保持上下文一致性,是核心技术难点之一; 2、跨语言与多框架适配:现有模型大多针对单一语言优化,而企业项目往往涉及多语言(如 Python、C++、Java 等)和多框架(如 React、Django、Kubernetes)。如何提升模型的跨语言泛化能力成为重要课题; 3、领域知识缺失与安全合规风险:通用大模型缺乏行业特定知识,可能生成不符合行业规范或存在潜在漏洞的代码,需引入领域知识与合规规则进行优化和增强; 4、人机协作:针对新涌现的大模型技术和应用场景,研究下一代软件研发人机交互形式,推动AI驱动的交互形式的普及与发展。

更新于 2025-05-16