小鹏汽车【26届校招】机器视觉算法工程师
校招全职地点:广州状态:招聘
任职要求
1. 2026届校招生,计算机科学、人工智能、数学或相关理工科专业本科及以上学历; 2.精通至少一种编程语言,如 Python、C++、Java 等,具备良好的编程风格和代码管理能力; 3.熟悉 OpenCV 等计算机视觉库的基础使用,有图像处理基础理论知识; 4.熟练掌握机器学习、深度学习的基本理论和常用算法; 5.熟悉常见的深度学习框架,如 TensorFlow、PyTorch等,能够使用这些框架进行模型的搭建、训练和调优; 6.具备良好的逻辑思维能力、问题分析与解决能力;具备良好的团队协作精神与沟通能力,能够快速融入团队。
工作职责
参与工业视觉检测及测量、视觉引导等项目的开发工作,协助完成图像识别、目标检测、图像分割、姿态识别等基础功能模块,并应用到工业制造生产流程。
包括英文材料
学历+
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
图像处理+
https://opencv.org/blog/computer-vision-and-image-processing/
This fascinating journey involves two key fields: Computer Vision and Image Processing.
https://www.geeksforgeeks.org/python/image-processing-in-python/
Image processing involves analyzing and modifying digital images using computer algorithms.
https://www.youtube.com/watch?v=kSqxn6zGE0c
In this Introduction to Image Processing with Python, kaggle grandmaster Rob Mulla shows how to work with image data in python!
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
相关职位
校招
1,负责车端视觉感知算法方向,用于车端无图高阶辅助驾驶功能; 2,侧重视觉BEV感知及道路拓扑感知,包括但不限于检测、分割、中心线拓扑生成等任务; 3,负责静态元素及道路拓扑网络核心算法技术突破,持续算法模型创新,加速模型工程化落地; 4,负责静态元素及道路拓扑感知模型车端交付,解决交付过程中的长尾 Corner Case、提升模型鲁棒性、自动化效率。
更新于 2025-08-01
校招
1.参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用; 2.负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和泛化能力; 3.设计和实现机器学习模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。
更新于 2025-06-22
校招
1.研发业界一流物理AI系统,包括不限于模仿学习, 强化学习, vla, vlm等训练系统与算法架构; 2.参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用; 3.设计和实现机器学习模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。
更新于 2025-07-01