小鹏汽车【探索者】国际物流工程师
任职要求
任职要求:
1.、本科及以上学历,国际贸易、物流管理等相关专业;
2.、具备0-2年国际物流经验,有车企国际物流经验者优先;
3.、具备优秀的规划、协调能力;
4.、英语可作为工作语言。
工作职责
1、负责公司的国际整车/备件从工厂到目的地港口的端到端物流作业; 2、负责国际整车/备件端到端的物流质量、成本、LT管理及信息化建设; 3、负责国际整车/备件物流体系相关文件的编制及完善,接受公司年度内外体系审核。 4、负责国际整车/备件物流方案设计、协同物流采购事宜、成本核算、物流商合同技术条款编写等; 5、负责国际整车/备件物流流程优化改进; 6、负责国际整车/备件物流供应商管理; 7、负责公司内外部相关部门协同。
Bravo 102是由阿里国际技术全团队共同发起的全球顶尖技术人才孵化计划,打破传统人才选拔及培养框架,为有志于走向AI未来的技术新锐们,提供“你行你上+我要我来”的双向奔赴式的实习机会选择。 在这里,“我”将不被岗位定义,以能力选择业务战场,与全球顶尖团队并肩作战,沉浸式体验全球多元化业务战场与亿级流量高并发系统。 加入我们,成为AIDC首批102位Bravo Talent,一起掌舵AI,为我们的未来Bravo! 关于我们: 阿里国际技术专注于提供卓越的数字零售技术服务,致力于服务全球消费者,并触达全球中小企业买家。我们希望利用AI技术让每个人都能够轻松、便捷地享受全球优质的商品和服务,推动商业活动更加高效、可持续,为社会未来的发展带来更多可能性。 我们提供涵盖商品智能、商家服务、供应链优化、跨境物流、搜索推荐引擎、用户增长、金融服务、客户体验、AI 基础设施、企业数智化、全球云及高可用架构、研发效能等技术领域,实习生可跨多个技术域实践,深度参与多场景技术攻坚,探索你想选择的职业发展方向; 在这里,你将和我们一起,采用领先的数字化及人工智能等技术持续解决商业活动中的现实问题,创造技术价值,为消费者带来更加美好的体验!欢迎加入我们! 职位描述: 1、负责大语言模型、图像模型、多模态等深度学习模型的在线推理、离线训练优化工作; 2、负责AI 生态内基础引擎系统能力的建设,包括信息检索、AI 记忆、流程调度等。 3、负责 AI 算法服务能力建设,针对业务场景的真实需求,设计合理的技术方案和路线
1. 负责菜鸟商业化算法研发落地工作; 2. 从召回、预估、流量机制、广告出价等角度,探索自建OCPX算法能力; 3. 通过召回算法、预估模型、出价与预算调控算法、营销算法等方向的算法迭代,助力广告营收增长;
Bravo 102是由阿里国际技术全团队共同发起的技术人才孵化计划,打破传统人才选拔及培养框架,为有志于走向AI未来的技术新锐们,提供“你行你上+我要我来”的双向奔赴式的实习机会选择。 在这里,“我”将不被岗位定义,以能力选择业务战场,与全球顶尖团队并肩作战,沉浸式体验全球多元化业务战场与亿级流量高并发系统。 加入我们,成为AIDC首批102位Bravo Talent,一起掌舵AI,为我们的未来Bravo! 关于我们: 阿里国际技术专注于提供卓越的数字零售技术服务,致力于服务全球消费者,并触达全球中小企业买家。我们希望利用AI技术让每个人都能够轻松、便捷地享受全球优质的商品和服务,推动商业活动更加高效、可持续,为社会未来的发展带来更多可能性。 我们提供涵盖商品智能、商家服务、供应链优化、跨境物流、搜索推荐引擎、用户增长、金融服务、客户体验、AI 基础设施、企业数智化、全球云及高可用架构、研发效能等技术领域,实习生可跨多个技术域实践,深度参与多场景技术攻坚,探索你想选择的职业发展方向; 在这里,你将和我们一起,采用领先的数字化及人工智能等技术持续解决商业活动中的现实问题,创造技术价值,为消费者带来更加美好的体验!欢迎加入我们! 以下工作内容你均有可能参与: 1、参与基础软件的设计、开发和维护,如分布式文件系统、缓存系统、Key/Value 存储系统、数据库、Linux 操作系统等,探索 AI 在系统调优中的应用(如通过机器学习预测热点数据提升缓存命中率); 2、参与国际电商系统及基础设施的核心模块开发,集成 AI 模型服务,为公司产品提供强有力的后台支持,设计并实施最强大的解决方案; 3、参与产品的开发和维护,完成从需求到设计、开发和上线等整个项目周期内的工作,能够通过 AI 工具提升开发效率; 4、参与海量数据处理和开发,使用Java/SQL/Python开发 ETL 流程,结合大模型实现数据清洗与特征工程自动化(如利用大模型生成 SQL 查询模板); 5、参与项目为用户提供丰富而有价值的桌面或无线软件产品,能够探索 AI 在业务场景的落地应用(如大模型在供应链定价、销量计划、库存、履约等复杂场景的智能洞察和协同,基于大模型的个性化推荐系统,交互式智能导购,需求预测模型部署,异常检测算法实现等)。
团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条/剪映等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案,大幅提升推荐模型的天花板。 1、在电商推荐海量用户与商品的数据下,探索大模型、大算力与推荐系统的结合; 2、探索多模态大模型等技术,提升相关类场景效果与用户体验; 3、探索LLM和推荐系统的结合、生成式推荐等方向,进一步提升信息匹配的效率。