蔚来资深大语言模型算法工程师/专家
社招全职5-7年数字技术地点:上海状态:招聘
任职要求
1. 优秀的代码能力、扎实的基础算法的功底,熟悉python或者C/C++,ACM、NIO/IOI、Top Coder、Kaggle等比赛获奖者有优先; 2. 熟悉NLP、CV相关的算法和技术,熟悉文本语言大模型、多模态大语言模型训练,有CPT、SFT、Post-pretrain、RL算法者优先; 3. 出色的问题分析和解决能力,能够深入到大模型训练和应用存在的问题,具有足够的好奇心; 4. 良好的沟通协作能力,能和团队一起探索新技术、推动技术进步,有坚韧不拔的精神;
工作职责
1. 负责垂类大模型的数据构建、指令微调、偏好对齐和模型优化工作; 2. 负责垂类大模型在业务场景中的应用落地,包含但不仅限于客服、搜索、推荐、创作和对话等领域; 3. 负责Agentic AI的服务部署,服务性能测试和优化,确保算法的准确性和效率都有所提升; 4. 协同产品和工程团队进行大语言模型能力的产品化和工程化、持续迭代并完成商业闭环;
包括英文材料
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Kaggle+
[英文] Kaggle Learn
https://www.kaggle.com/learn
Gain the skills you need to do independent data science projects.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
SFT+
https://cameronrwolfe.substack.com/p/understanding-and-using-supervised
Understanding how SFT works from the idea to a working implementation...
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
相关职位
社招5-7年数字技术
1. 负责垂类大模型的数据构建、指令微调、偏好对齐和模型优化工作; 2. 负责垂类大模型在业务场景中的应用落地,包含但不仅限于客服、搜索、推荐、创作和对话等领域; 3. 负责Agentic AI的服务部署,服务性能测试和优化,确保算法的准确性和效率都有所提升; 4. 协同产品和工程团队进行大语言模型能力的产品化和工程化、持续迭代并完成商业闭环;
更新于 2025-08-05
社招
1. 参与团队预训练基座大模型的研发,包括预训练,后训练,指令微调,对齐等方向; 2. 负责以大语言模型为核心的对话感知与交互,根据业务需求优化模型,提升业务效果; 3. 负责跟踪和探索大语言模型的前沿问题,结合实际场景,参与前沿算法和应用的研究和专利、论文撰写。
更新于 2024-12-30
社招
1,算法开发与优化: 负责自动驾驶模型算法的研发设计,包括但不限于行为决策、轨迹生成、运动规划等模块的深度学习/强化学习模型设计 探索基于Transformer、模仿学习(Imitation Learning)、强化学习(RL)等前沿技术的模型算法设计、应用方案 优化自动驾驶算法的实时性、安全性和舒适性,解决复杂场景(如拥堵、交互博弈、长尾问题)下的规划挑战 2,数据驱动迭代: 构建和利用大规模驾驶数据集(仿真+真实数据),设计数据闭环 pipeline 提升规划性能 参与数据标注、场景挖掘、仿真测试等环节,推动算法迭代 3,系统集成与部署: 与感知、控制等模块团队协作,实现模型算法在车载计算平台的部署 支持实车测试,分析问题并提出改进方案。 4,前沿技术跟踪: 跟进学术界(如CVPR、ICRA、CoRL)和工业界最新进展,将创新技术落地到量产或研发项目中
更新于 2025-06-30