
得物机器学习平台研发工程师/专家
社招全职3年以上技术类地点:北京 | 上海状态:招聘
任职要求
1. 计算机或电子通信相关专业本科以上,3年以上Python/Java开发经验; 2. 有一站式机器学习平台设计和开发经验,熟悉MLOps平台化开发工作; 4. 熟悉搜索/广告/推荐模型训练和预估推理流程,了解深度学习训练框架、推理框架; 5. [加分项] 熟悉kubeflow、airflow等开源系统; 6. [加分项] 有一站式机器学习平台产品设计经验; 7. [加分项] 熟悉k8s等容器编排系统; 8. [加分项] 熟悉Jupyter NoteBook等交互式的编程环境平台化集成、搭建、运营和管理。
工作职责
1. 负责一站式机器学习平台的设计研发与迭代改进,包含前端,后台,平台任务流程设计和研发,为算法同学提供一站式模型训练和上线服务的能力; 3. 协同训练框架、推理框架等团队确保一站式服务平台的稳定性和易用性; 4. 服务算法模型团队,提供样本管理、模型开发调试、模型训练任务管理和版本管理、一键式上线服务部署等功能的平台化能力; 5. 对接容器算力团队,屏蔽算法团队对底层算力资源的感知,提供模型训练和模型服务的资源和任务调度能力; 6. 负责模型平台的任务、资源、成本等数据收集和自动化分析、展示功能开发,推动公司机器学习成本优化工作。
包括英文材料
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
Kubeflow+
https://huggingface.co/blog/turhancan97/building-your-first-kubeflow-pipeline
Kubeflow is an open-source platform designed to be end-to-end, facilitating each step of the Machine Learning (ML) workflow.
https://www.kubeflow.org/docs/started/introduction/
Kubeflow is the foundation of tools for AI Platforms on Kubernetes.
https://www.youtube.com/watch?v=6wWdNg0GMV4
In this walk-through I will show you how I've created a machine learning pipeline with Kubeflow 1.5 using Juypter Notebooks, Kubeflow pipelines, MinIO and Kserve.
Airflow+
[英文] Tutorials - Airflow
https://airflow.apache.org/docs/apache-airflow/stable/tutorial/index.html
Once you have Airflow up and running with the Quick Start, these tutorials are a great way to get a sense for how Airflow works.
https://www.youtube.com/watch?v=K9AnJ9_ZAXE
In this 2-hour Airflow Tutorial for Beginners Full Course, we combine theory explanation and practical demos to help you get started quickly as an absolute beginner.
Kubernetes+
https://kubernetes.io/docs/tutorials/kubernetes-basics/
This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration system.
https://kubernetes.io/zh-cn/docs/tutorials/kubernetes-basics/
本教程介绍 Kubernetes 集群编排系统的基础知识。每个模块包含关于 Kubernetes 主要特性和概念的一些背景信息,还包括一个在线教程供你学习。
https://www.youtube.com/watch?v=s_o8dwzRlu4
Hands-On Kubernetes Tutorial | Learn Kubernetes in 1 Hour - Kubernetes Course for Beginners
https://www.youtube.com/watch?v=X48VuDVv0do
Full Kubernetes Tutorial | Kubernetes Course | Hands-on course with a lot of demos
Jupyter+
https://www.dataquest.io/blog/jupyter-notebook-tutorial/
Jupyter Notebook is an incredibly powerful tool for interactively developing and presenting data science projects.
https://www.youtube.com/watch?v=2WL-XTl2QYI
This Jupyter Notebook Tutorial for Beginners with Python provides a set up, introduction, and quick start for Jupyter Notebooks.
[英文] 📺Jupyter Notebook Complete Beginner Guide - From Jupyter to Jupyterlab, Google Colab and Kaggle!
https://www.youtube.com/watch?v=5pf0_bpNbkw
Jupyter notebooks and python notebooks are an important tool for data science.
相关职位

社招3年以上技术类
我们是得物机器学习平台团队,负责构建面向搜索推荐场景的一站式深度学习平台。你将参与机器学习平台的研发工作。 专注于每日数百亿PV请求的在线高可靠、高并发的CPU/GPU异构推理计算框架和通用的特征平台建设;
更新于 2023-12-26

社招3年以上技术类
团队负责研发一站式搜广推模型机器学习平台,该岗位专注于面向搜索/推荐/广告场景的机器学习分布式训练系统研发 1、负责研发搜广推稀疏大模型分布式GPU同步训练框架,支持GPU单机多卡、多机多卡训练,支持稀疏参数的多级缓存架构和异步流水训练,满足搜广推稀疏大模型离线训练、在线学习、特征准入和淘汰等算法需求; 2、负责TensorFlow/Pytorch框架的后端GPU训练性能优化,个别自定义GPU算子的cuda kernel开发和优化; 3、参与样本数据平台、搜推模型全链路解决方案、LLM4REC等重要方向的研发,提升平台的效率和易用性,加速算法同学的模型迭代效率。
更新于 2023-12-26
社招5年以上技术类-算法
1、负责高德算法平台的设计研发与迭代改进,为各业务线提供稳定易用、高性能的平台解决方案; 2、负责核心模块的设计与开发,支撑模型训练、自动迭代、特征平台、模型服务、模型管理、资源调度、服务可观测等AI全生命周期研发工作; 3、持续跟进业内AI平台与前沿技术进展,推动新技术在高德落地。
更新于 2025-08-21