logo of dewu

得物算法平台实习生(电商推荐精排模型方向)

实习兼职技术类地点:上海状态:招聘

任职要求


任职要求:
1. 熟练掌握主流推荐算法,熟悉多目标建模、序列建模等技术,对MOE、MMOE、PLE等模型有深入理解。
2. 熟悉深度学习框架(Tensor…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


岗位职责:
研究并应用先进的多目标模型技术如MMOE、PLE等,进行电商推荐的多目标模型优化。在参数个性化、loss权重自适应学习等方面进行探索。
包括英文材料
算法+
深度学习+
TensorFlow+
PyTorch+
还有更多 •••
相关职位

logo of bytedance
实习A123784A

ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括: 1、探索最前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战; 2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力; 3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的个性化匹配问题,让搜索更加精准更加懂你; 4、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新; 5、千亿级数据规模的架构:设计和自研业内领先的检索架构,研发面向网页、视频、图文、电商等不同体裁的大规模数据处理平台,构建高吞吐、低延迟、高可用的搜索在线服务。 1、参与抖音,今日头条,西瓜视频,剪映等App,以及国内外电商,生活服务等业务的搜索推荐模型和策略改进,负责这些业务的搜索流量和用户渗透增长&搜索心智建设任务;接触公司前沿的推荐系统,搜索引擎和NLP技术,有广阔发展空间; 2、以推荐算法为核心技术栈,改进基于超大规模机器学习模型的推荐系统,覆盖从候选挖掘到召回,粗排,精排,多目标融合全链路技术环节; 3、探索短文本推荐和通用推荐技术的上限,重点是推荐和NLP技术的联合应用,以及大模型应用,多模态等前沿技术的探索。

更新于 2025-02-18北京
logo of bytedance
实习A108597

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 电商推荐算法是互联网商业变现的核心驱动力,目前我们有国内最大的兴趣电商分发场景以及最大的电商广告分发场景,我们希望借鉴生成式AI的成功思路,探索在电商推荐算法和架构上的颠覆性创新,解锁更大的算法效果提升空间。重点探索以下方向: 1)基于类Transformer结构的生成式推荐大模型技术,验证电商推荐场景的Scaling Law,探索面向大模型的特征工程以及算法建模范式; 2)研究电商推荐模态下的Tokenization以及COT相关算法优化; 3)算法和工程协同设计与优化,提升海量数据、超大参数背景下的训练与推理效率; 4)语言/推荐/视频等多模态模型的结合。 1、负责电商推荐及电商广告场景推荐大模型的算法优化,引入生成式AI技术,优化算法建模方法、模型结构、特征和样本等,提升电商分发效率; 2、验证推荐大模型的Scaling Law,应对大模型训练中的一切新挑战; 3、挖掘有效的用户行为,不限于Sideinfo、Action_Type等,同时研究行为聚合算法; 4、算法和工程高度融合、协同设计,极致优化推荐大模型的训练及推理效率。

更新于 2025-05-27北京
logo of bytedance
实习A98756

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 电商推荐算法是互联网商业变现的核心驱动力,目前我们有国内最大的兴趣电商分发场景以及最大的电商广告分发场景,我们希望借鉴生成式AI的成功思路,探索在电商推荐算法和架构上的颠覆性创新,解锁更大的算法效果提升空间。重点探索以下方向: 1)基于类Transformer结构的生成式推荐大模型技术,验证电商推荐场景的Scaling Law,探索面向大模型的特征工程以及算法建模范式; 2)研究电商推荐模态下的Tokenization以及COT相关算法优化; 3)算法和工程协同设计与优化,提升海量数据、超大参数背景下的训练与推理效率; 4)语言/推荐/视频等多模态模型的结合。 1、负责电商推荐及电商广告场景推荐大模型的算法优化,引入生成式AI技术,优化算法建模方法、模型结构、特征和样本等,提升电商分发效率; 2、验证推荐大模型的Scaling Law,应对大模型训练中的一切新挑战; 3、挖掘有效的用户行为,不限于Sideinfo、Action_Type等,同时研究行为聚合算法; 4、算法和工程高度融合、协同设计,极致优化推荐大模型的训练及推理效率。

更新于 2025-05-27上海
logo of bytedance
实习A135123A

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条/剪映等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案,大幅提升推荐模型的天花板。 1、在电商推荐海量用户与商品的数据下,探索大模型、大算力与推荐系统的结合; 2、探索多模态大模型等技术,提升相关类场景效果与用户体验; 3、探索LLM和推荐系统的结合、生成式推荐等方向,进一步提升信息匹配的效率。

更新于 2025-03-06北京