蚂蚁金服研究型实习生-生成式搜索算法方向研究型实习生
任职要求
研究领域: -目前正在攻读计算机科学或相关STEM领域的学士,硕士或博士学位 -具有一种或多种通用编程语言的经验,包括但不限于: Java,C/C ++ 、Python、JavaScript或Go -具有上述研究领域的相关经验,包括行业经验或作为参与实验室研究 优先录用: -对技术研究充满热情,具有产生新思想和创新的能力; 在自学,问题分析和解决方面表现出色 -在国际会议上或核心期刊发表一份或多份出版物或论文 -至少3个月的全职工作
工作职责
研究领域: 人工智能 项目简介: 生成式搜索是支付宝搜索CY25的重点技术和业务方向,技术挑战是怎么去通过LLM生成高时效、高准确率的的搜索结果。 对RAG、语义召回、语义ReRank、幻觉检测等技术有比较高的挑战。 希望能够引进相关方向的研究型实习生,在生成式搜索相关技术方向上进行课题攻关,进一步提升团队技术能力和技术深度。
1. 跟进和研发大规模语言模型(LLM)的预训练、持续训练、SFT、RLHF 等技术。 2. 研发基于大模型的生成式召回、广告点击率预估、用户搜索词理解等下游应用。 3. 结合以上方向的探索和研究,撰写发表论文,和业界、学术界保持良好的交流。
团队介绍 POI智能化使命是通过高质量高效率低成本的智能化手段及先进生产力,数字化还原真实世界POI,保障POI数据的时效性、正确性和完备性,作为高德用户信息获取、交易履约和出行体验的基础。每个POI背后都有精彩的故事,我们作为链接POI和用户的第一步,每一分努力都是与现实世界的一次互动。 职位描述 我们需要NLP和多模态大模型方向的算法工程师,负责对地图生产资料、互联网情报、搜索日志、用户反馈等非结构化文本进行分析和信息抽取,负责理解高德用户的到达行为,融合人地大数据,构建知识图谱和智能推理能力,打通数据生产和前台业务,使得用户获得更加智能的出行和服务体验。 1、参与和负责POI产线的NLP算法部分,包括POI的NLP基础功能服务、多模态名称融合生成、名称质检模块、名称纠错模块等; 2、搭建POI的NLP基础服务平台,实现以POI为核心实体的地图数据图谱,为高德的POI搜索、推荐业务提供完备信息; 3、配合其他POI采集、挖掘、调度、聚合业务,建模NLP任务,提供准确且有效的NLP信息; 4、积极地探索和研究NLP的应用和认知领域,结合地图场景,提供更加全面且完备的服务;
团队介绍:字节跳动基础架构团队主要负责公司云基础建设,支撑着字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、飞书、剪映等,同时也负责支持火山引擎公有云业务。迄今为止,我们通过云技术管理着百万量级的服务器构成的超大数据中心;我们通过字节深度优化的Kubernetes管理超过千万容器实例支持10万+微服务;我们还通过丰富的存储产品矩阵,如NewSQL、NoSQL、云存储等治理EB级的数据资产;我们积极拥抱开源和创新的软硬件架构,致力于构建业界领先的云基础设施,为整个公司的业务和客户发展保驾护航。我们热切期待对技术有追求、对大型系统有深刻见解的同学加入基础架构团队一起构建基础设施系统。 课题介绍: 课题背景: 在大语言模型蓬勃发展的当下,本课题聚焦于智能云基础设施与数据处理关键技术的多维度研究,旨在全面提升云服务在 AI 场景下的综合性能与效率。 课题挑战: 1、新一代搜索型数据库:当前产业界广泛应用的ElasticSearch面临数据与用户需求的深刻变革。需实现语义检索升级,突破关键词匹配限制,以满足学术研究等领域对语义理解和精准检索的要求;具备处理和融合多模态数据的能力,应对互联网图像、音视频多模态数据的爆发式增长;优化检索过程,更好地支持检索增强生成(RAG)技术,为语言模型提供优质信息;同时,需应对各行业海量数据存储检索压力,提升搜索实时性与跨语言能力; 2、面向LLM的下一代智能云基础架构:一方面,自动化和智能化管理基础架构各系统生命周期,深度融合人工智能与基础架构关键系统,建设大规模LLM for Infra 服务;另一方面,针对新涌现的LLM应用场景,在基础架构各个领域进行前沿技术创新,与字节工程团队合作,设计和开发高性价比且简单易用的下一代大模型基础架构,为火山引擎奠定技术与业务增长基础; 3、面向 AI 场景的serverless高性能弹性文件系统关键技术研究:大模型时代数据量爆炸式增长,当前文件系统多采用中心化元数据架构,难以水平扩展,限制文件系统规模及元数据性能。本研究将围绕元数据扩展性、与大模型深度结合提供Data Insight、设计高性能元数据单机引擎、实现任意目录快照、融合文件系统和对象存储元数据、内存加速、提供QoS(性能租户隔离和目录隔离)、故障处理(故障域隔离和故障无损)以及研发高性能客户端(用户态文件协议和DPU卸载)等关键技术展开; 4、面向大规模AI集群的高速通信和稳定性优化:随着大模型训练/推理业务规模增长,底层高速网络面临挑战。一方面,需解决GPU服务器硬件资源利用率偏低问题,包括充分利用CPU和内存空闲资源,以及研发计算通信融合的高性能集合通信库,实现通信算子与计算任务的深度融合;另一方面,在稳定性方面,提升故障快速发现和根因定位能力,解决网络吞吐不达预期等典型故障。
团队介绍:字节跳动基础架构团队主要负责公司云基础建设,支撑着字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、飞书、剪映等,同时也负责支持火山引擎公有云业务。迄今为止,我们通过云技术管理着百万量级的服务器构成的超大数据中心;我们通过字节深度优化的Kubernetes管理超过千万容器实例支持10万+微服务;我们还通过丰富的存储产品矩阵,如NewSQL、NoSQL、云存储等治理EB级的数据资产;我们积极拥抱开源和创新的软硬件架构,致力于构建业界领先的云基础设施,为整个公司的业务和客户发展保驾护航。我们热切期待对技术有追求、对大型系统有深刻见解的同学加入基础架构团队一起构建基础设施系统。 课题介绍: 课题背景: 在大语言模型蓬勃发展的当下,本课题聚焦于智能云基础设施与数据处理关键技术的多维度研究,旨在全面提升云服务在 AI 场景下的综合性能与效率。 课题挑战: 1、新一代搜索型数据库:当前产业界广泛应用的ElasticSearch面临数据与用户需求的深刻变革。需实现语义检索升级,突破关键词匹配限制,以满足学术研究等领域对语义理解和精准检索的要求;具备处理和融合多模态数据的能力,应对互联网图像、音视频多模态数据的爆发式增长;优化检索过程,更好地支持检索增强生成(RAG)技术,为语言模型提供优质信息;同时,需应对各行业海量数据存储检索压力,提升搜索实时性与跨语言能力; 2、面向LLM的下一代智能云基础架构:一方面,自动化和智能化管理基础架构各系统生命周期,深度融合人工智能与基础架构关键系统,建设大规模LLM for Infra 服务;另一方面,针对新涌现的LLM应用场景,在基础架构各个领域进行前沿技术创新,与字节工程团队合作,设计和开发高性价比且简单易用的下一代大模型基础架构,为火山引擎奠定技术与业务增长基础; 3、面向 AI 场景的serverless高性能弹性文件系统关键技术研究:大模型时代数据量爆炸式增长,当前文件系统多采用中心化元数据架构,难以水平扩展,限制文件系统规模及元数据性能。本研究将围绕元数据扩展性、与大模型深度结合提供Data Insight、设计高性能元数据单机引擎、实现任意目录快照、融合文件系统和对象存储元数据、内存加速、提供QoS(性能租户隔离和目录隔离)、故障处理(故障域隔离和故障无损)以及研发高性能客户端(用户态文件协议和DPU卸载)等关键技术展开; 4、面向大规模AI集群的高速通信和稳定性优化:随着大模型训练/推理业务规模增长,底层高速网络面临挑战。一方面,需解决GPU服务器硬件资源利用率偏低问题,包括充分利用CPU和内存空闲资源,以及研发计算通信融合的高性能集合通信库,实现通信算子与计算任务的深度融合;另一方面,在稳定性方面,提升故障快速发现和根因定位能力,解决网络吞吐不达预期等典型故障。