蚂蚁金服蚂蚁国际-Data & Analytics Lead-Marketing Operation
社招全职7年以上市场-营销智能地点:上海 | 杭州状态:招聘
任职要求
● Fluent English and Chinese ● 7+ years of experience in a data analysis role within a marketing environment ideally in financial services and/or a regulated industry. ● Advanced proficiency in data analysis tools such as Google Analytics, SQL, R, or Python. ● Proven ability to create and maintain dashboards using BI and data visualization tools (e.g., Power BI, Tableau, Looker)…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
We are a dynamic and forward-thinking organization that focuses on leveraging data analytics to drive demand generation, enhance marketing efficiency, and improve decision-making processes. As the Data & Analytics Lead, you will play a critical role in leading our data strategy and delivering actionable insights to optimize marketing performance. This role offers you a chance to contribute significantly to shaping the data and analytics foundation of a growing business. Key Responsibilities: 1. Data Platform & Dashboard Development - Architect, develop, and maintain the company’s data platform, integrating data across multiple sources to enable seamless analytics processes. - Design and implement dashboards using modern data visualization tools (e.g., Tableau, Power BI, Looker) for real-time measurement of KPIs. - Ensure consistent data governance standards to maintain accuracy, security, and usability of the data ecosystem. 2. Paid Media & Digital Analysis - Conduct in-depth performance analysis of paid media campaigns across digital channels, including SEM, display advertising, social media, and more. 3. CRM Management - Manage CRM systems to consolidate and leverage customer data for sales and marketing activities. - Analyze customer behaviors and lifecycle data to improve segmentation, engagement, and retention efforts. 4. Event & Multi-Channel Demand Generation Optimization - Evaluate the effectiveness of events, webinars, and campaigns across online and offline channels. - Provide actionable insights to optimize demand generation strategy across email marketing, paid ads, events, and other channels. - Monitor lead generation performance and implement strategies for improving campaign impact. 5. Multi-Channel & Closed-Loop Analysis - Build and implement closed-loop analytics systems across marketing and sales channels to track customer journeys and conversion pathways. - Analyze the effectiveness of telemarketing efforts, focusing on metrics like conversion rates, lead quality, and customer acquisition cost (CAC). - Deliver cross-channel attribution insights and optimization solutions to ensure seamless integration across all touchpoints. 6. Marketing ROI Optimization - Develop and maintain robust ROI models to measure and forecast returns on marketing investments across all activities. - Provide actionable recommendations to continually improve efficiency and effectiveness of the marketing spend.
包括英文材料
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
R+
[英文] R Tutorial
https://www.w3schools.com/r/
R is often used for statistical computing and graphical presentation to analyze and visualize data.
还有更多 •••
相关职位
实习DATA
在公司个性化AI相关的大模型/多模态大模型/AI智能体等相关领域进行前沿研究,包括但不限于: 1. 大模型推理和个性化技术,包括模型对齐、推理能力增强、强化学习、个性化推理等研究方向; 2. AI Agent相关技术,如搜索增强/GUI Agent/自主学习Agent/Agent自动生成等; 3. AI搜索相关技术,如工具调用、推理模型、检索增强、多模态检索等; 4. 相关应用落地,包括个性化AI平台、Deep Research、AI创作等; 5. 更多前沿研究方向和未来生活应用场景的深入研究和探索
更新于 2025-11-24深圳
社招6-12年DATA
1、负责消费信贷产品的风控策略及团队管理工作,主导产品流程的设计和创新,构建和完善业务全流程的风险体系; 2、制定风控管理策略,负责信用政策、额度策略、流程等建设,对业务进行分析和风险管理,共同为业务目标负责; 3、深度挖掘和利用内外部数据,不断提升风险识别能力,为风险结果负责; 4、深入了解消费信贷产品的业务模式和底层逻辑,主导信贷产品的客户分层、客群识别及经营分析。
更新于 2025-11-25深圳
社招5-10年DATA
1、负责零售业务(门店零售、私域/会员、商城)数据仓库架构、技术选型、演进规划,设计和实施高效、稳定、可扩展的数据模型,负责核心代码逻辑开发与推进落地 2、建立和完善数据治理体系,包括数据质量、元数据管理、主数据管理和数据安全,制定并推行数据开发规范及标准、设计和优化大规模数据ETL/ELT流程,确保数据处理的高效性和可靠性。 3、负责数据报表系统需求管理和研发工作,深刻理解业务需求,并将其转化为可行的技术方案,确保数据准确性、稳定性、及时性 4、管理和优化数据存储与计算资源,在保证服务水准的前提下有效控制成本。 5、定期评估并引入前沿的数据技术和工具,持续优化技术栈
更新于 2025-11-13深圳