蚂蚁金服蚂蚁集团-时序算法专家-蚂蚁健康
社招全职3年以上技术类-算法地点:杭州状态:招聘
任职要求
1、专业背景: 计算机、自动化、信号处理、数学等相关专业硕士及以上学历,具备极强的底层算法设计与数学建模能力; 2、时序建模能力: 深入理解 Transformer、RNN/LSTM、CNN 以及最新的时序预测模型,在序列建模、时序表征、异常检测方向有深厚的实战经验;熟悉数字信号处理相关算法者优先; …
登录查看完整任职要求
微信扫码,1秒登录
工作职责
团队介绍: 蚂蚁集团医疗健康时序算法团队致力于通过前沿的 AI 技术与多维感知的结合,构建深度的数字化洞察体系。在这里,我们面对的是极具挑战性的海量异构时序数据。我们致力于探索时序预测、自监督表征学习及大模型(LLM)等技术的深度融合,构建精准的数字化建模方案,用技术力量服务于更广泛的用户群体。 1、长序列表征与预测: 针对高频、长周期的多源异构时序数据,研发领先的分类、回归与演化趋势预测算法,解决复杂环境下的信号去噪、异常检测及长程依赖建模挑战; 2、多维序列分析与建模: 探索多维行为数据的关联分析,构建个体状态的数字化镜像,通过算法模型驱动阿福 AI 助理生成精准的预测与行动建议; 3、全链路技术优化: 参与从感知端到云端的全链路技术布局,研究算法轻量化(量化、蒸馏)及端云协同架构,支撑模型在低功耗环境下的高效部署与实时响应。
包括英文材料
学历+
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
RNN+
https://d2l.ai/chapter_recurrent-neural-networks/rnn.html
A neural network that uses recurrent computation for hidden states is called a recurrent neural network (RNN).
https://www.deeplearningbook.org/contents/rnn.html
Recurrent neural networks, or RNNs (Rumelhart et al., 1986a), are a family of neural networks for processing sequential data.
https://www.ibm.com/think/topics/recurrent-neural-networks
A recurrent neural network or RNN is a deep neural network trained on sequential or time series data to create a machine learning (ML) model that can make sequential predictions or conclusions based on sequential inputs.
LSTM+
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Humans don’t start their thinking from scratch every second.
https://d2l.ai/chapter_recurrent-modern/lstm.html
The term “long short-term memory” comes from the following intuition.
https://developer.nvidia.com/discover/lstm
A Long short-term memory (LSTM) is a type of Recurrent Neural Network specially designed to prevent the neural network output for a given input from either decaying or exploding as it cycles through the feedback loops.
https://www.youtube.com/watch?v=YCzL96nL7j0
Basic recurrent neural networks are great, because they can handle different amounts of sequential data, but even relatively small sequences of data can make them difficult to train.
CNN+
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
Convolutional Neural Network (CNN) forms the basis of computer vision and image processing.
[英文] CNN Explainer
https://poloclub.github.io/cnn-explainer/
Learn Convolutional Neural Network (CNN) in your browser!
https://www.deeplearningbook.org/contents/convnets.html
Convolutional networks(LeCun, 1989), also known as convolutional neuralnetworks, or CNNs, are a specialized kind of neural network for processing data.
https://www.youtube.com/watch?v=2xqkSUhmmXU
MIT Introduction to Deep Learning 6.S191: Lecture 3 Convolutional Neural Networks for Computer Vision
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
还有更多 •••
相关职位
社招3年以上技术类-算法
1、算法研发:负责时序异常检测、时序预测等核心算法的研发与迭代,解决复杂业务场景下的挑战。 2、平台建设:设计并打造系统化的AIOps平台,为蚂蚁智能平台工程提供核心能力支撑。 3、模型创新:参与时序基础大模型 (Foundation Model) 的研发,探索前沿技术边界。
更新于 2025-07-28北京|杭州
社招技术类-算法
1. 研发面向代码开发&风险的大模型,包括但不限于代码大模型、NLP、全模态、时序分析等领域相关的大模型的应用算法研发; 2. 基于强化学习,研发全模态(代码/运维/工具调用/操作界面图像等)的推理模型 3. 搭建深度搜索/工具调用/自动操作网页和手机/各种运维平台的agent 4.系统化的风险发现和应急算法搭建
更新于 2025-04-14杭州
社招3年以上技术类-算法
1. 流动性算法:综合运用机器学习与运筹优化技术,解决信贷资产预测、资金-资产匹配等关键问题,保障流动性安全与效益最大化; 2. 营销与增长建模:将互联网金融产品的营销、流量分发与用户增长问题抽象为算法问题,通过推荐系统、因果推断、数据挖掘等方法设计并落地算法解决方案; 3. 前沿技术探索:结合信贷与金融市场场景,探索大模型(如AIGC、Agent、LLM for Recommendation)等新技术的可行性与落地路径; 4. 跨团队协作:与产品、数据、风控等团队紧密合作,推动算法模型在真实业务场景中的规模化应用。
更新于 2025-10-22杭州